Pod Trichome Characterisation Using Foldscope, Morphological Characterization and Genetic Diversity Among Indigenous Collections of Pigeonpea [*Cajanus cajan* (L.) Millsp.]

K. Satish¹, S. Muniswamy², G. Girish³, Vikas Kulkarni¹, J.R. Diwan¹, Geeta², Neeta Singh⁴, Sushil Pandey⁴, I.P. Singh⁵

10.18805/LR-4423

ABSTRACT

Background: Association of several morphological traits such as trichome length and trichome density on the pod surface have been found to influence host plant resistance to insect pests. Genetic diversity analysis is used to identify the divergent genotypes and to utilize these genotypes to exploit heterosis. Further, morphological characters are stable across environments owing to oligogeneic nature, they serve as morphological markers in breeding which can be used in varietal or genotypic identification, varietal purification and even in seed production. Hence, the current study aimed to investigate on host plant resistance using portable paper microscope 'foldscope', genetic diversity and morphological characters.

Methods: A total of 154 germplasm lines with three checks were evaluated in augmented block design (ABD) at Zonal Agricultural Research Station (ZARS), Kalaburagi, during *kharif*, 2018 to study their genetic diversity. Trichome length and trichome density were recorded using 'foldscope' 75 randomly selected genotypes, then correlated with shrivelled seed yield per plot due to pod fly incidence. Morphological characterization of 14 qualitative traits were recorded.

Result: Grouping of 157 germplasm lines into twelve clusters indicated a wider genetic diversity for the traits studied, of which 7 clusters were solitary with one entry each. The genotypes with more trichome density and length had less damage by the pod fly. Large variations for morphological characters was observed among the genotypes for qualitative traits such as pod colour, stem colour, flower colour, seed morphology and pod trichomes.

Key words: Correlation, Diversity, Morphological characterization, Trichomes, Variability.

INTRODUCTION

Pigeonpea [*Cajanus cajan* (L.) Millsp.] is one of the most multifaceted grain legume crops of rainfed agriculture in the semi-arid tropics. It engrosses a prime niche in sustainable farming systems of smallhold rainfed farmers. It plays an important role in food security, balanced diet and alleviation of poverty because of its diverse usages as a food, fodder and fuel (Rao *et al.*, 2002). It ranks sixth in global grain legume production and worldwide it is cultivated in about more than 5.0 m ha area. India is the largest producer and consumer of pigeonpea with an area of 4.4 m ha, with annual production of 3.68 m t and productivity of 832 kg/ha (Anonymous, 2019). The average yield in India remained around 900 kgs/ha for the past six decades (FAOSTAT, 2017).

In plant breeding, variability studies are important to know the genetically divergent genotypes. Considering the choice of diverse parental material in the study, lot of diversity is expected to be generated for various characters. Genetic diversity analysis was therefore used to identify the divergent genotypes and to utilize these genotypes to exploit heterosis. The genetically diverse parents are likely to produce not only heterotic effect but also desirable segregates to be selected.

Host plant resistance being one of the most exploited methods and is an important component for minimizing the losses due to insect pests. Association of several morphological traits such as trichome length and trichome density on the pod surface have been found to influence ¹Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Raichur-584 104, Karnataka, India. ²Zonal Agricultural Research Station, Kalaburagi-585 104, Karnataka, India.

³Agricultural Research Station, Hagari, Bellary-583 138, Karnataka, India.

⁴National Bureau of Plant Genetic Resources, New Delhi-110 012, India. ⁵AICRP on Pigeonpea, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur-208 024, Uttar Pradesh, India.

Corresponding Author: S. Muniswamy, Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Raichur-584 104, Karnataka, India. Email: muniswamygpb@gmail.com

How to cite this article: Satish, K⁻, Muniswamy, S., Girish, G., Kulkarni, V., Diwan, J.R., Geeta, Singh, N., Pandey, S. and Singh, I.P. (2023). Pod Trichome Characterisation Using Foldscope, Morphological Characterization and Genetic Diversity Among Indigenous Collections of Pigeonpea [*Cajanus cajan* (l.) Millsp.]. Legume Research. 46(8): 1013-1019. doi: 10.18805/LR-4423.

Submitted: 21-05-2020 Accepted: 07-10-2020 Online: 07-01-2021

host plant resistance to insect pests. In this regard, association of pod trichomes with pod fly was studied in the present investigation using portable paper microscope 'foldscope'.

Morphological characters are stable across environments owing to oligogeneic nature. Hence, they serve as morphological Pod Trichome Characterisation Using Foldscope, Morphological Characterization and Genetic Diversity Among Indigenous...

markers in breeding which can be used in varietal or genotypic identification, varietal purification and even in seed production. Keeping above points in view, the genotypes were categorized based on morphological characters.

MATERIALS AND METHODS

Present experiment was carried out during *Kharif* 2018 at Zonal Agriculture Research Station (ZARS), Kalaburagi, which is situated in agro-climatic zone-2 (North Eastern Dry Zone) of Karnataka state with 17° 20' Latitude (N), 76° 49' Longitude (E) and at an altitude of 443.88 meters above mean sea level.

A total of 154 indigenous collections of pigeonpea obtained from National Bureau of Plant Genetic Resource (NBPGR)., New Delhi and three checks BSMR-736, Asha and PT-012 were sown in augmented block design (ABD) consisting of 11 blocks with 14 genotypes in each block and checks were repeated randomly. Each genotype was sown in three rows of three meter length with spacing of 90 cm between rows and 20 cm between plants. Standard agronomic practices were followed and plant protection measures were taken as and when required by following the recommended package of practices (Anonymous, 2017). Observations were recorded on nine quantitative traits in five randomly selected plants from each genotype, viz., days to 50% flowering, days to maturity, plant height, number of primary branches, number of secondary branches, pod bearing length, number of pods per plant, seed yield per plant and 100 seed weight. Data recorded on five plants were averaged and average values were subjected to statistical analysis. The analysis of variance (ANOVA) was carried out for all characters individually. The data was analyzed using WINDOSTAT ver. 8.5 software developed by Indostat services, Hyderabad as per the principles of Mahalanobis (1936) and clustering by Tocher's method (Rao, 1952) respectively.

Pod trichome length and density (per mm²)

Foldscope is an optical microscope that can be assembled from simple components, including a sheet of paper and a lens. It was developed by Dr. Manu Prakash and designed to cost less than US\$1 to build. It provides magnification upto 140X. The kit includes magnets that can be stuck onto the foldscope to attach it to a smartphone, allowing the user to take pictures of the magnification. The prepared slide is inserted into the paper microscope and the pod trichomes were observed and counted for trichome length and trichome density respectively and pictures were taken with the help of smartphone.

The pod's surface layer of test genotypes were cut into discs measuring 5 mm diameter and heated in 20 ml of water in glass test tubes on water bath at 85°C. The water is then poured off and 20 ml of 96% ethyl alcohol was added and the contents were boiled for 20 min at 80°C. Then alcohol was poured off and fresh alcohol was added until the chlorophyll content was completely removed. The sample was boiled at 85°C by adding concentrated lactic acid until the pod segments were cleared. The test tubes were cooled, length of trichomes on pods was measured by gently pressing a sticky transparent tape on the pod surface, then fixed to a glass slide. The length of trichomes was observed and measured using the image J software. Number of trichomes per unit area on the epidermal layer of pod was counted under a foldscope. Mean data of five pods (3 observation from each pod) in each entry was used for analysis as trichome density.

Trichome length and trichome density, were correlated with shrivelled seed yield per plot due to pod fly incidence in 75 randomly selected genotypes.

Table 1: Analysis of variance for yield and yield attributing traits of pigeonpea germplasm lines.

	DF	DFF	DM	РН	PB	SB	PBL	NPPP	SY/PP	100 SD Wt	Tr.Lgt	Tr.den
Block (Ignoring treatments)	10	311.14**	548.11**	890.26**	15.98**	26.09**	162.56**	9724.94**	359.16**	3.32**	0.006**	460.95**
Treatment (eliminating blocks)	156	167.91**	326.00**	317.24**	7.00**	10.55**	50.31**	2101.85**	147.53**	3.67**	0.002**	57.21**
Checks	2	1386.09**	1827.84**	24.40	112.75**	15.48**	6.40*	184.75	242.43**	1.13**	0.008**	50.66**
Checks + var vs var	154	152.09**	306.49**	321.04**	5.62**	10.49**	50.88**	2126.75**	146.30**	3.70**	0.002**	57.30**
Block (Eliminating check + var.)	10	4.19	5.60*	16.14	2.29**	1.20**	0.827	203.01	11.67	0.13	0.0001	1.66
Entries (Ignoring blocks)	156	187.57**	360.78**	373.27**	7.87**	12.15**	60.68**	2712.23**	169.81**	3.88**	0.003**	86.65**
Varieties	153	151.12**	268.87**	360.79**	5.37**	11.66**	60.88**	2756.59**	144.15**	1.36**	0.003**	83.24**
Check vs var.	1	3366.45**	11488.54**	2981.03**	181.21**	80.67**	138.45**	979.76*	3950.99**	394.48**	0.03**	680.65**
Error	20	1.62	1.71	10.39	0.62	0.15	1.74	156.49	24.10	0.12	0.0001	1.66

*- Significant at 5 per cent; **- Significant at 1 per cent.

DFF: Days to 50% flowering; PB: Number of primary branches; NPPP: Number of pods per plant; DM: Days to maturity; SB: Number of secondary branches; 100 seed wt: 100 seed weight (g); PH: Plant height (cm); PBL: Pod bearing length (cm); SY/PP: Seed yield per plant (g); Tr.lgt: Trichome length; Tr.den: Trichome density.

Morphological characterization of 14 qualitative traits were recorded as per the key guidelines provided by PPV & FR (Protection of Plant Varieties and Farmer Rights) Authority, New Delhi and seed characteristics were recorded as per ICRISAT/ IBPGR (1993) (International Bureau of Plant Genetic Resources) guidelines.

RESULTS AND DISCUSSION

Analysis of variance (ANOVA) exhibited highly significant differences among genotypes for all the traits (Table 1). Based on D² values, the genotypes were grouped into 12 clusters using Tocher's method given by Rao (1952). Of the 12 clusters, cluster I was the largest comprising 60 genotypes followed by cluster II (55 genotypes), cluster III

(21 genotypes), cluster VII (11 genotypes), cluster X (3 genotypes) and seven clusters (IV, V, VI, VIII, IX, XI, XII) were solitary with single genotypes each. These results are similar to observations of Muniswamy *et al.* (2014) and Patel *et al.* (2018). Katiyar *et al.* (2004), observed 14 clusters while grouping of 221 genotypes whereas Nethravathi and Patil (2014) obtained nine clusters using 196 genotypes.

Generation of more clusters in general and sole clusters in specific is a representative of existence of huge amounts of diversity between the set of genotypes. The genotypes that fall into solitary cluster more usually have some distinctive characters which make them divergent. Furthermore, the genotypes which have congregated into a cluster exhibit narrow range of genetic diversity among them

Table 2: Clustering pattern of pigeonpea germplasm lines based on D² analysis.

Cluster Number	No. of germplasm lines				Name	of germp	lasm lines				
I	60	1	IC468573	14	IC523118	27	IC523138	40	IC523170	53	IC523204
		2	IC468585	15	IC523121	28	IC523140	41	IC523173	54	IC523205
		3	IC468587	16	IC523122	29	IC523142	42	IC523175	55	IC523210
		4	IC523098	17	IC523123	30	IC523143	43	IC523176	56	IC523222
		5	IC523103	18	IC523125	31	IC523145	44	IC523179	57	IC523224
		6	IC523105	19	IC523127	32	IC523153	45	IC523180	58	IC523225
		7	IC523106	20	IC523128	33	IC523155	46	IC523181	59	IC523238
		8	IC523109	21	IC253130	34	IC523156	47	IC523182	60	PT-0012
		9	IC523110	22	IC523131	35	IC523157	48	IC523186		
		10	IC523111	23	IC523132	36	IC523164	49	IC523190		
		11	IC523112	24	IC523133	37	IC523165	50	IC523193		
		12	IC523114	25	IC523134	38	IC523166	51	IC523194		
		13	IC523116	26	IC523135	39	IC523168	52	IC523195		
II	55	1	IC468569	12	IC523102	23	IC523154	34	IC523189	45	IC523220
		2	IC468570	13	IC523104	24	IC523160	35	IC523191	46	IC523221
		3	IC468571	14	IC523107	25	IC523162	36	IC523192	47	IC523228
		4	IC468572	15	IC523113	26	IC523163	37	IC523196	48	IC523230
		5	IC468578	16	IC523115	27	IC523169	38	IC523197	49	IC523231
		6	IC468579	17	IC523117	28	IC523177	39	IC523198	50	IC523232
		7	IC468580	18	IC523129	29	IC523178	40	IC523200	51	IC523233
		8	IC468584	19	IC253148	30	IC523183	41	IC523207	52	IC523235
		9	IC468586	20	IC523149	31	IC523184	42	IC523208	53	IC523236
		10	IC468592	21	IC523150	32	IC523187	43	IC523209	54	IC523237
		11	IC523100	22	IC523152	33	IC523188	44	IC523213	55	IC523239
III	21	1	IC468590	6	IC523120	11	IC523146	16	IC523171	21	IC523223
		2	IC468593	7	IC523137	12	IC523158	17	IC523172		
		3	IC523101	8	IC523139	13	IC523159	18	IC523174		
		4	IC523108	9	IC523141	14	IC523161	19	IC523185		
		5	IC523119	10	IC523144	15	IC523167	20	IC523206		
IV	1	1	IC468574								
V	1	1	IC523234								
VI	1	1	IC523226								
VII	11	1	IC468576	4	IC468589	7	IC523147	10	ASHA		
		2	IC468583	5	IC523099	8	IC523211	11	BSMR-736		
		3	IC468588	6	IC523136	9	IC523212				
VIII	1	1	IC523151								
IX	1	1	IC523126								
Х	3	1	IC468575	2	IC468577	3	IC8581				
XI	1	1	IC468591								
XII	1	1	IC523124								

Volume 46 Issue 8 (August 2023)

while, between clusters had broad range of variability. The generation of such clusters may be due to total isolation arresting the gene flow or rigorous natural or human selection for diverse adaptive complexes. The grouping of 154 germplasm lines into twelve clusters is presented in Table 2.

The highest intra cluster distance was noticed in cluster VII (55.57), followed by III (47.15), I (43.47), II (41.52) and X (37.95). The inter cluster D² values were maximum (241.23) between clusters V and IX indicating these two clusters are distantly placed, followed by clusters VI and IX (238.89), IV and IX (238.63). It is sensible to select genotypes from clusters showing high inter cluster distance for further crossing programme (Table 3). These results are in agreement with the earlier findings of Sreelakshmi *et al.*, (2010), Muniswamy *et al.* (2014) and Patel *et al.* (2018).

Cluster mean analysis (Table 4) indicated that cluster IV (87.00) and II (92.45) are comprised of early flowering

genotypes. Cluster XI (133.00) comprised early maturing genotypes followed by cluster VIII (136.00). The highest cluster mean for number of pods per plant was recorded in cluster IX (286.00) followed by cluster III (231.52). The highest cluster mean for seed yield per plant was recorded cluster IX (51.70) followed by cluster III (40.77). The maximum cluster mean for 100 seed weight was recorded in cluster XI (12.00) followed by cluster IV (11.50). Similar results were also obtained by Muniswamy *et al.* (2014) and Patel *et al.* (2018).

Contribution of individual characters towards divergence have been calculated (Table 5), which revealed that the relative contribution of number of pods per plant has maximum (71.62%) followed by plant height (13.06%), number of days to maturity (8.93%), number of days to 50 per cent flowering (2.94%), seed yield per plant (2.90%) and rest of the genotypes have shown very negligible or no

Table 3: Intra (diagonal) and intercluster distances (D² value) of 154 germplasm lines along with checks of pigeonpea.

Cluster	I	П	111	IV	V	VI	VII	VIII	XI	Х	XI	XII
I	43.47	82.95	76.21	122.80	123.97	123.39	74.36	70.71	125.30	120.31	58.87	91.19
II		41.52	140.14	56.58	57.49	57.80	88.82	122.64	194.49	104.75	93.84	134.34
III			47.15	183.54	184.45	184.09	109.55	64.90	70.83	161.62	86.74	93.15
IV				0.00	19.62	14.43	116.86	166.08	238.63	112.61	127.72	166.65
V					0.00	19.37	118.89	163.06	241.23	111.65	133.24	172.35
VI						0.00	115.80	167.43	238.89	107.48	125.73	166.71
VII							55.57	118.30	153.89	76.86	74.20	79.04
VIII								0.00	108.10	166.93	101.00	124.10
IX									0.00	206.51	123.28	113.51
Х										37.95	114.48	116.53
XI											0.00	72.18
XII												0.00

*Diagonal values indicate intra cluster distances.

*Above diagonal values indicate inter cluster distances.

Table	4:	Cluster	means	of	12	clusters	for	yield	and	its	related	traits	in	pigeonpea	germplasm	lines
-------	----	---------	-------	----	----	----------	-----	-------	-----	-----	---------	--------	----	-----------	-----------	-------

Cluster no.	No. of germplasm lines	DFF	DM	PH	PB	SB	PBL	NPPP	SY/PP	100 seed wt	Overall score	Rank
I	60	94.10(5)	143.53(7)	107.09(7)	13.40(3)	7.03(3)	22.33(7)	170.78(5)	30.86(5)	7.64(10)	52	4
П	55	92.45(2)	139.91(5)	97.81(10)	11.62(8)	5.29(6)	20.26(9)	101.07(9)	19.31(7)	7.66(9)	65	7
Ш	21	95.71(6)	146.90(9)	111.07(6)	13.14(4)	8.29(1)	23.31(6)	231.52(2)	40.77(2)	8.12(7)	43	3
IV	1	87.00(1)	141.00(6)	101.70(9)	9.00(11)	2.00(10)	22.00(8)	54.00(11)	11.70(10)	11.50(2)	68	8
V	1	97.00(8)	145.00(8)	89.00(11)	10.00(9)	4.00(8)	14.70(12)	55.00(10)	6.00(12)	7.50(11)	89	10
VI	1	96.00(7)	139.00(4)	107.00(8)	12.00(7)	6.00(5)	17.00(11)	54.00(11)	6.30(11)	7.50(11)	75	9
VII	11	119.27(10)	176.09(10)	133.19(5)	12.09(6)	4.39(7)	32.08(3)	144.73(7)	36.92(3)	9.29(4)	55	6
VIII	1	93.00(3)	136.00(2)	63.30(12)	13.00(5)	8.00(2)	20.00(10)	215.00(3)	19.30(8)	8.00(8)	53	5
IX	1	96.00(7)	137.00(3)	136.70(4)	15.00(1)	7.00(4)	33.70(2)	286.00(1)	51.70(1)	10.00(3)	26	1
Х	3	154.33(11)	198.00(12)	146.37(3)	9.67(10)	3.33(9)	28.87(4)	102.00(8)	19.67(6)	8.83(5)	68	8
XI	1	94.00(4)	133.00(1)	153.30(2)	14.00(2)	8.00(2)	25.30(5)	170.00(6)	14.70(9)	12.00(1)	32	2
XII	1	105.00(9)	180.00(11)	165.00(1)	10.00(9)	4.00(8)	67.70(1)	193.00(4)	34.00(4)	8.50(6)	53	5

DFF: Days to 50% flowering; PB: Number of primary branches; NPPP: Number of pods per plant; DM: Days to maturity; SB: Number of secondary branches; 100 seed wt: 100 seed weight (g); PH: Plant height (cm); PBL: Pod bearing length (cm); SY/PP: Seed yield per plant (g).

Pod Trichome Characterisation Using Foldscope, Morphological Characterization and Genetic Diversity Among Indigenous...

Characters	Times ranked 1 st	Contributions (%)	Cumulative
Number of pods per plant	8771	71.62	71.62
Plant height	1599	13.06	84.68
Days to maturity	1094	8.93	93.61
Days to 50% flowering	360	2.94	96.55
Seed yield per plant	355	2.90	99.45
Pod bearing length	53	0.43	99.88
Number of secondary branches	13	0.11	99.99
Primary branches	1	0.01	100
100 seed weight	0	0.00	100

Table 5: Per cent contribution of each character towards genetic divergence in pigeonpea germplasm lines

Table 6: Estimation of phenotypic correlation coefficients for shrivelled seed yield per plot due to pod fly incidence with pod trichomes for 75 randomly selected pigeonpea germplasm.

	Tr.length	Tr.density	Shrivelled seed yield per plot due to pod fly incidence
Tr.length	1.000	-0.138 NS	-0.184 NS
Tr.density	-0.138 NS	1.000	0.128 NS
Shrivelled seed yield per plot due to pod fly incidence	-0.184 NS	0.128 NS	1.000

*NS- Non significant.

C) IC523145

Plate 1: Morphological variation for pod trichome length and density in germplasm lines.

Plate 2: Healthy vs shrivelled seeds of pigeonpea due to pod fly damage.

contribution towards diversity. While selection of genotypes, characters like number of pods per plant should receive maximum importance as they contributed more towards genetic divergence. These findings are in confirmative with previous results of Muniswamy et al. (2014); Singh et al. (2010); Bhadru (2011) and Hariprasad et al. (2018).

Trichome length and density

The average pod trichome length obtained was 0.22 mm per mm² and it ranged from 0.10 mm (IC468576) to 0.39 mm (IC523145). The average pod trichome density recorded was 33.92 per 1 mm² and it ranged from 10.47 (IC468576) to 58.87 (IC523106). Estimation of phenotypic correlation coefficients for shrivelled seed yield per plot due to pod fly (Melanagromyza obtusa) incidence with pod trichomes in 75 randomly selected pigeonpea lines revealed negative non significant correlation indicating that the genotypes having high trichome length and trichome density suffered less damage by pod fly may due to antixenosis (Table 6). The genotypes IC523145 and IC553106 which had more trichome length and density respectively, had less shrivelled seed yield per plot (Plate 1 and 2). These genotypes can be used in the breeding programme against pod fly host plant resistance. The above results and findings are in line with the findings of Moudgal et al. (2008); Revathi (2014) and Dhakla et al. (2010). The foldscope was used to measure rice root hair length and rice lemma trichome (Diwan and Kashappa, 2019).

Morphological characterisation

Out of 154 genoytypes, morphological variation was not observed for plant growth habit, leaf pubescence and pod pubescence. Unique genotypes were observed for characters like Dark purple stem colour (IC523231), cylindrical pod shape (IC 468590), mottled, specked seeds (IC468584) and Elongate seed shape (IC523168). The traits like early plant vigour, branching pattern, base flower colour, stem colour, streak pattern of base petal, pod colour, seed characteristics exhibited lot of variation and the results of characterization of genotypes for morphological traits are presented in Table 7. Similar findings for plant vigor and plant growth habit were observed by Muniswamy *et al.* (2014) and Kumar *et al.* (2016). Hariprasad (2018) found similar results for branching pattern and stem colour. Kallihal *et al.* (2016) observed similar morphology in case of streaks

Table 7: Morphological characterization of 154 pigeonpea germplasm lines.

Qualitative characters	Туре	No. of genotypes	Frequency (%)/ genotype
Early plant vigour	Poor	2	1.29
	Good	121	78.57
	Very good	31	20.12
Branching pattern	Erect and compact	56	36.36
	Semi spreading	51	33.11
	Spreading	47	30.51
Plant growth habit	Determinate	0	0
-	Semi determinate	0	0
	Indeterminate	154	100
Base flower colour	Light yellow	7	4.54
	Yellow	136	88.31
	Orange yellow	8	5.19
	Red	3	1.94
Stem colour	Green	121	78.57
	Sun red	4	2.59
	Purple	28	18.18
	Dark purple	1	IC 523231
Leaf pubescence	Glabrous	154	100
	Pubescent	0	0
Streaks pattern	Sparse streaks	84	54.54
·	Medium streaks	57	37.01
	Dense streaks	13	8.44
Pod pubescence	Glabrous	0	0
·	Pubescent	154	100
Pod shape	Flat	153	99.35
	Cylindrical	1	IC 468590
Pod colour	Green	11	7.14
	Purple	2	1.29
	Dark purple	2	1.29
	Green and purple	138	89.61
Seed colour pattern	Plain	150	97.40
·	Mottled	0	0
	Speckled	3	1.94
	Mottled and speckled	1	IC 468584
Seed eve width	Narrow	62	40.25
, ,	Medium	71	46.10
	Wide	21	13.63
Base seed colour	White	6	3.89
	Cream	20	12.98
	Orange	8	5.19
	Light brown	71	46.10
	Reddish brown	43	27.92
	Dark grev	0	0
	Dark purple	6	3.89
Seed shape	Oval	110	71.42
	Globular	26	16 88
	Square		11 03
	Elongate	1	IC 523168
		•	

Legume Research- An International Journal

Pod Trichome Characterisation Using Foldscope, Morphological Characterization and Genetic Diversity Among Indigenous...

pattern on base petal, pod shape and pod colour. Similar findings for seed colour pattern, base seed colour were found by Muniswamy *et al.* (2014).

CONCLUSION

Germplasm lines IC468574, IC523234, IC523226, IC523151, IC523126, IC468591 and IC523124 which fall into solitary cluster more often have some unique characters which make them divergent. Based mean performances of yield and yield related traits, the genotypes IC523144, IC523171, IC468593, IC523126, IC468590 were found promising. Hence, afore said genotypes can be used for the further studies for improving the yield as a parent in the future breeding programme. IC523145 and IC553106 genotypes which are having more trichome density and length can be used against the pod fly host plant resistance in plant breeding.

ACKNOWLEDGEMENT

- Authors are thankful to National Bureau of Plant Genetic Resource (NBPGR), New Delhi for providing seed materials and the CRP-AB pigeonpea project for funding through Indian Institute of Pulses Research Institute (IIPR), Kanpur.
- Authors are also thankful to DBT, Govt. of India for financial support to carryout research using Foldscope.

REFERENCES

- Anonymous, (2017). Improved agronomic practices, UAS Dharwad and UAS, Raichur, pp 100-112.
- Anonymous, (2019). Project Coordinator's Report, AICRP on Pigeonpea.
- Braham, M.A., Mahmud, A.A., Zeba, F. and Afrin, K.S. (2010). Genetic variability, character association and genetic divergence in Mungbean. Indian J. Crop Sci. 3(1): 1-6.
- Bhadru, D. (2011). Variability and genetic divergence studies in white seed coated pigeonpea [*Cajanus cajan* (L.) Millsp.]. Crop Res. 42(1/2/3): 263-268.
- Diwan, J.R. and Kashappa, C. (2019). Foldscope as a Research Tool and its Applications. In: Book Foldscope and Its Applications [(Ed.) Arundev Sharma] published by National Press Associates, New Delhi.
- Dhakla, K., Yadav, G.S. and Rohilla, H.R. (2010). Assessment of pigeonpea genotypes for resistance to pod fly, *Melanagromyza* obtusa (Malloch). J. Insect Sci. 23(1): 70-75.
- FAOSTAT, (2017). Food and Agriculture Organization of the United Nations. Rome, Italy. http://faostat.fao.org/database.

- Hariprasad, C., (2018). Genetic diversity studies and morphological characterization in germplasm lines of pigeonpea [*Cajanus cajan* (L.) Millsp.]. M. Sc. (Agri.) Thesis, Univ. Agril. Sci., Raichur, Karnataka, India.
- Kallihal, P.K., Chandrashekhar, S.S., Shwetha, K.S., Salimath, P.M. and Dhone, V.K., (2016). Characterization of pigeonpea [*Cajanus cajan* (L.) Millsp.] genotypes based on morphological traits. BIOINFOLET-A Quat. J. Life Sci. 13(2a): 212-215.
- Katiyar, P.K., Dua, R.P., Singh, I.P., Singh, B.B. and Singh, F. (2004). Multivariate analysis for genetic diversity in early pigeonpea accessions. Legume Res. 27(3): 164-170.
- Kumar, A., Singh, A., Kumar, R. and Singh, B. (2016). Genetic variability, character association and path analysis in pigeonpea [*Cajanus cajan* (L.) Millspaugh]. Bull. Env. Pharmacol. Life Sci. 7(3): 63-68.
- Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proc. Natl. Inst. Sci. India. 2: 49-55.
- Moudgal, R.K., Lakra, R.K., Dahiya, B. and Dhillon, M.K. (2008). Physico-chemical traits of [*Cajanus cajan* (L.) Millsp.] pod wall affecting *Melanagromyza obtusa* (Malloch) damage. Euphytica. 161: 429-436.
- Muniswamy, S., Lokesha, R., Dharmaraj, P.S., Yamanura and Diwan, J.R. (2014). Morphological characterization and assessment of genetic diversity in minicore collection of pigeonpea [*Cajanus cajan* (L.) Millsp.]. Electronic J. Pl. Breed. 5(2): 179-186.
- Nethravathi, K.H. and Patil, B.R. (2014). Character association and path coefficient analysis for yield and its components in pigeonpea. Karnataka J. Agric. Sci. 27(2): 225-226.
- Patel, H.N., Patel, A.M., Patel, J.M. and Patel, N.I., (2018). Genetic divergence study through D² analysis in pigeonpea [*Cajanus cajan* (L.) Millsp.]. International Journal of Chemical Studies. 6(5): 1947-1950.
- Rao, C.R. (1952). Advanced Statistical Methods in Biometrical Research. John Wiley and Sons, New York, pp: 22.
- Rao, S.C., Coleman, S.W. and Mayeux, H.S., (2002). Forage production and nutritive value of selected pigeonpea ecotypes in the southern great plains. Crop Sci. 42: 1259-1263.
- Revathi, K. (2014). Evaluation of pigeonpea genotypes against pod fly, *Melanagromyza obtuse* (malloch). M. Sc. (Agri.) Thesis, Univ. Agril. Sci., Hyderabad, Karnataka, India.
- Singh, M.N., Awasthi, S.K. and Singh, R.S. (2010). Genetic divergence in pigeonpea. J. Food Legume. 23(1): 82-83.
- Sreelakshmi, C., Shivani, D. and Sameer Kumar, C.V. (2010). Genetic divergence and stability analysis in pigeonpea [*Cajanus cajan* (L.) Millsp.]. Electron. J. Pl. Breed. 1(4): 530-535.