Prakash N. Tiwari¹, Sharad Tiwari¹, Swapnil Sapre¹ Anita Babbar², Niraj Tripathi³, Sushma Tiwari⁴, Manoj Kumar Tripathi⁴

10.18805/LR-5191

ABSTRACT

Background: Being a vital source of high-quality dietary protein, chickpea is an unavoidable legume. The present investigation was performed to study the applicability of the microsatellite markers linked with drought tolerance in Indian chickpea genotypes collected from different genetic background.

Methods: In *Rabi* 2021-22, forty chickpea genotypes including national check for drought tolerance, elite cultivars, released varieties and advanced breeding lines were screened employing forty microsatellite markers linked with drought tolerance associated traits. **Result:** Among forty drought tolerance related microsatellite markers, twenty-six were found to be polymorphic and produced a total of 66 alleles, with a mean of 2.5 alleles per locus. Model-based population structure analysis clearly distinguished the drought tolerant genotypes including ICC4958, JG74, JAKI9218, JG16, JG6, JG14 and JG11. The principle coordinate analysis (PCoA) and analysis of molecular variance (AMOVA) further confirmed these results. Findings of the present investigation would have a greater potential for further utilization in breeding of drought specific chickpea cultivar(s).

Key words: Chickpea, Drought tolerance, Microsatellite markers, Polymorphic information content, Population structure.

INTRODUCTION

Legumes are very essential in human diet as they are not only complementing nutrients in the cereal diet but also improve the taste and texture of staple dish (Varol et al., 2020; Yadav et al., 2023). Chickpea (Cicer arietinum L., 2n = 16) is a nutrition-rich economical source of high-quality protein comprised of globulin and albumins as compared to animal protein and is hence vital for nutritional security in developing nations, especially in India (Gupta et al., 2021; Ningwal et al., 2023). "Desi" and "Kabuli" are two main types (Sahu et al., 2020) of cultivated chickpeas in the world. In which "Desi" chickpea covers about 80-85% of the total chickpea cultivation area in the world, primarily grown in South Asia, East Africa and Australia. In India, chickpea has contributed to the 'Pulse Revolution', making the country near self-sufficient in pulses from 2014-15 to 2020-21 with a remarkable increase in chickpea production and productivity. Chickpea production rose to an all-time high of 12.61 mt during 2020-21 from a level of 7.59 mt in 2014-15, with an increase of nearly 66% in production and >26% in productivity during six years (Dixit, 2021).

Abiotic stresses, especially drought and heat reduce yield of different crops (Mishra *et al.*, 2021; Sharma *et al.*, 2021; Asati *et al.*, 2022) including chickpea over 70% (Varshney *et al.*, 2019). The application of molecular markers may shorten the crop breeding cycle and ultimately leads to crop improvement particularly in complex traits controlled by polygenes (Mishra *et al.*, 2022; Solanki *et al.*, 2022; Yadav *et al.*, 2023). Several quantitative trait loci (QTLs) for droughttolerance associated traits have been reported in chickpea. The QTL-hotspot genomic region present on CaLG04 explained >50% phenotypic variation for drought tolerance ¹Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482 004, Madhya Pradesh, India.

²Department of Genetics and Plant Breeding, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482 004, Madhya Pradesh, India. ³Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482 004, Madhya Pradesh, India.

⁴Department of Plant Molecular Biology and Biotechnology, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior-474 002, Madhya Pradesh, India.

Corresponding Author: Sharad Tiwari; Manoj Kumar Tripathi, Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482 004, Madhya Pradesh, India; Department of Plant Molecular Biology and Biotechnology, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior-474 002, Madhya Pradesh, India. Email: stiwari@jnkvv.org; drmanojtripathi64@gmail.com

How to cite this article: Tiwari, P.N., Tiwari, S., Sapre, S., Babbar, A., Tripathi, N., Tiwari, S. and Tripathi, M.K. (2023). Prioritization of Microsatellite Markers Linked with Drought Tolerance Associated Traits in Chickpea (*Cicer arietinum* L.). Legume Research. 46(11): 1422-1430. doi: 10.18805/LR-5191.

Accepted: 23-08-2023	Online: 12-09-2023
	Accepted: 23-08-2023

(Varshney *et al.*, 2014). Additionally, genome-wide microsatellite markers associated with drought tolerance related traits were also reported (Li *et al.*, 2018; Varshney *et al.*, 2019).

Marker-assisted backcross breeding has been successfully employed for developing superior chickpea lines with improved yield and drought tolerance. Drought tolerant variety Pusa Chickpea 10216 has also been released for commercial cultivation in India (Bharadwaj *et al.*, 2021).

In the light of above facts, employing drought tolerance linked microsatellite markers, the present study was aimed to assess the pattern and level of genetic diversity and developing population structure among national check for drought tolerance, elite cultivars, released varieties and advanced breeding lines.

MATERIALS AND METHODS

Plant materials

Forty chickpea genotypes were obtained from the All India Coordinated Research Project (AICRP) on Chickpea, Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur (Table 1). The genotypes were grown in the Net house of Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur during *Rabi* 2021-22.

DNA extraction and quantification

Genomic DNA from young leaves of grown chickpea genotypes was isolated using the cetyl triethyl ammonium bromide (CTAB) method (Doyle and Doyle 1987). Two grams of leaf samples were ground in liquid nitrogen into a fine powder using sterilized pestle and mortar. About 100 mg of leaf powder was transferred to 2 ml micro-centrifuge tubes containing 1 ml of extraction buffer (0.1M Tris-HCI (pH 7.6), 0.005M EDTA and 0.2M Tris-HCl, 0.05M EDTA, 2M NaCl and 2% CTAB). Sample tubes were incubated at 65°C for one hour then centrifuged at 10000 rpm for 15 minutes with chloroform-isoamyl alcohol (24:1) mixture for protein separation. Supernatant was transferred to fresh tube and chilled isopropanol was used for the precipitation of DNA. Precipitated DNA was pelleted down through centrifugation and the DNA pellet was dried and dissolved in 50 µl of Milli-Q (MQ) water. The quantity and quality of all DNA samples were checked using agarose gel (0.8%). The working DNA sample was obtained by diluting to a final DNA concentration of 40-50 ng per microlitre (µL).

Polymerase chain reaction (PCR) and gel electrophoresis

Forty genome wide distributed drought tolerance linked microsatellite markers were selected based on polymorphic information content (PIC), allelic richness and heterozygosity from previous studies (Table 2). Primers were synthesized from Integrated DNA Technologies (Asia Pacific, Singapore). The PCR reactions were performed with a total volume of 10 µl containing 40-50 ng of DNA, 1.5 mM MgCl₂, 0.2 mM dNTPs, 0.4 mM each of the forward and reverse primers and 1U Tag DNA polymerase in a Sure Cycler 8800 (Agilent Technologies) after optimizing the annealing conditions specific for each primer pair. The PCR was performed with an initial denaturation step of 5 min at 94°C, tracked by 35 cycles of 30s denaturation at 94°C, annealing at 55-60°C (depending on the primer) for 50s, initial extension at 72°C for 50s. The final extension was accomplished at 72°C for seven min. The PCR products were resolved on 2.8% agarose gel in 1 \times TAE buffer with a 6 \times DNA loading dye. Electrophoresis was carried out on horizontal electrophoresis with 65V for two and half hours using a standard 100 bp DNA ladder (Promega, Madison, USA). Gel pictures were snapped on a Vilber Laurmet, QUANTUM-ST5 gel electrophoresis system.

Analysis of genotypic data through a model-based approach

Scoring each polymorphic SSR marker was done with the help of Gel Analyzer V19.1 software. The allelic data scores were used for computing locus-based diversity indices with the help of GenAIEx V6.51b2 software and Power Marker V3.25 software. The Population structure for 40 genotypes was constructed using STRUCTURE version 2.3.4 software. An analysis of molecular variance (AMOVA) and principal coordinates analysis (PCoA) within and among populations were performed using GenAIEx V6.51b2.

RESULTS AND DISCUSSION

Modern chickpea improvement program largely necessitates the identification of highly diverse chickpea germplasm, highly polymorphic trait-specific molecular markers, which can be effectively utilized for the development of improved varieties. Thus, the characterization of chickpea germplasm has the great potential for playing a vital role in future international breeding programs (Mir et al., 2022), especially in India (Asati et al., 2022; Yadav et al., 2023), which is the largest chickpeaproducing nation (Dixit, 2021). Consequently, for identification of new sources of germplasm having valuable genes/QTLs to improve yield and enhance resistance/tolerance to various abiotic and biotic stresses, investigation of structure and nature of genetic diversity and phylogenetic relationship within and among cultivated chickpea varieties, breeding lines and its wild relatives is obviously needed (Mir et al., 2022). For Indian chickpea genotypes, molecular diversity and population structure studies using drought tolerance related traits linked microsatellite markers are very limited, hence this study was initiated to analyze the nature and structure of genetic diversity and phylogenetic relatedness among 40 chickpea genotypes.

Polymorphism among chickpea genotypes

The SSRs have been widely utilized for genetic diversity analysis, germplasm grouping and population structure analysis in numerous crops, including chickpea (Choudhary *et al.*, 2012; Mishra *et al.*, 2020; Rathore *et al.*, 2022). The present investigation determined the suitability of selected trait linked microsatellite markers for genetic diversity analysis of chickpea genotypes. Out of 40 applied markers, only 26 showed consistent polymorphic banding patterns with genotypes, indicating their suitability for genetic diversity analysis. The remaining fourteen that produced monomorphic bands among genotypes revealing one allele at each locus were not considered for diversity analysis.

Overall, 66 alleles were identified by 26 polymorphic markers from the 40 tested genotypes with a mean of 2.5

alleles per locus (Table 3). The allelic richness (Na) per locus ranged between two (most of the markers) to four (TR 19 and NCPGR 127). The numbers of effective alleles (Ne) ranged from 1.22 (ICCeM058) to 3.57 (NCPGR 127), with an overall mean of 1.92 effective alleles per locus. The most frequent major allele frequency (0.90) was found for the marker ICCeM0058 and the lowest (0.40) for marker NCPGR127, with an average of 0.66. The highest gene diversity (0.72) and PIC value (0.67) were found for the marker NCPGR127, whilst the lowest gene diversity (0.18)

and PIC value (0.16) was investigated for the marker ICCeM0058, with an average of 0.44 and 0.37, respectively. The microsatellite marker analysis result indicated moderate allelic richness per locus and relatively moderate to high PIC, Ho and He values. A high level of genetic diversity indicated the existence of higher molecular variation among the 40 tested chickpea genotypes, in agreement with the previous studies (Mir *et al.*, 2022). During present study, the most of the loci (20) exhibited a low level of observed heterozygosity in comparison to the expected heterozygosity

Table '	1:	Details	of	the	forty	chickpea	genotypes	used	for	present	study	with	their	parentage	and	source.
---------	----	---------	----	-----	-------	----------	-----------	------	-----	---------	-------	------	-------	-----------	-----	---------

Genotype name	Status	Pedigree	Source
ICC4958	National check for drought tolerance	JGC 4958	JNKVV, Jabalpur
JAKI9218	Released variety	(ICCC 37 × GW5/7) × ICCV 107	JNKVV, Jabalpur
JG11		(Phule G-5 $ imes$ Narsinghpur bold) $ imes$ ICCC 37	
JG16		ICCC 44 \times ICCV 10	
JG63		Single Plant selection from JG 62	
JG74		A composite from genetic stock	
JG6		(ICCV10XK850) × (H208XRS11)	
JG14		(GW5/7XP326) × ICCL83149	
JG17		BDNG 9-3 × Narshingpur Bold	
JG24		(JG 74 × ICC 4958)-21	
JG28		[(JM - 1 × IPC 9239) × JG 7] -14-11	
JG32	·	[(JM - 1 × IPC 4958) × JG 315] -2	
JG33		[(JM - 1 × IPC 9239) × JG 322] -30-3	
JG36		JG 12 × JG 16	
JG42		[(JM 1 ×IPC 9239) JG7] 14-11-2011-42	
JG226		JG 74 × JG315	
JG205		JG 315 × ICC 96029	
ICCV15102		ICCV03112 × ICCV10	ICRISAT, Patancheru
ICCV15115		ICCV10 × ICCV 96970	
ICCV15118		ICCV 05530 × ICCV 88510	
ICCV19616		JAKI 9218/ICCV 05103	
ICCV181664		ICC 4958 TM/JG 130	
JG2003-14-16	Advanced breeding line	[(JM1 × ICC4929) × ICC4958]-2-14-16	JNKVV, Jabalpur
JG2016-44		(ICC 96029 × ICC11551) 44	
JG2016-45		(JG 74 × ICC11551) 45	
JG2016-1411		JG 14 × JG 11	
JG2016-1614		JG 16 × JG 14	
JG2016-9605		JG 74 × ICC 96029	
JG2016-9651		JG 130 × ICC 96029	
JG2016-74315		[{(JG 74 × WR 315) × JG 74} -2010 -1- 3	
		-5-11-15-10-2]	
JG2016-634958		JG 63 × ICC 4958	
JG2016-921814		JAKI 9218 × JG 14	
JG2017-48		(JG 315 × ICC 96029)48	
JG2018-51		JG63 × ICC1205	
JG2022-74		JG12 ×JG74	
JG2016-36		JG12 ×JG16-1	
JG2022-75		JG12 ×ICC4958	
JG2021-6301		JG12 × ICCV06301	
JG2021-1424		JG14 ×JG24	
JG2021-1617		JG16 × JG17	

1424

Legume Research- An International Journal

TAR TAR Col 20 Col 20 <thcol 20<="" th=""></thcol>	Primer name	Type	Repeat motif	LG	Linked QTL/gene	Linked trait
TANTO TIMA (TV) 33 04 ORSeM01 Food Implications Food Implications COPCRR12 STMS (TT) 24 0.4 ORS100.001 Post optications <	STMS11	STMS	(GA) 20	04	QTLSW1	QTL hotspot for drought tolerance
Image: Non-Series (C) 24 0.4 CT Drugit Indiame Drugit Indiame NCPGRP12 <stms< td=""> (C) 14 0R3pH00. Poids per plant. 100 seed weight. root length. doi: NCPGRP12<stms< td=""> (C) 115 0.4 0R3pH00. Poids per plant. 100 seed weight. root length. doi: NCPGRP21<stms< td=""> (C) 115 0.4 0R3pH00. Poids per plant. 100 seed weight. root length. doi: NCPGRP21<stms< td=""> (C) 115 0.4 0R3pH00. Poids per plant. 100 seed weight. root length. doi: CCM0248<stms< td=""> (C) 124 0.4 0R3100s400.02 10.4 0R3100s400.02 CCM0249<stms< td=""> (C) 124 0.4 0.4 0.1 Dought Indeance Avia STMS (C) 124 0.1 Dought Indeance</stms<></stms<></stms<></stms<></stms<></stms<>	TAA170	STMS	(TTA) 33	04	QR3sdw01	Root length, pods and seeds per pod, harvest index, yield
MCPCRT27 STMS (GA) 18 04 ORSph003, CRSpd011, Pros see pair 100 seed weight, root length, to comming days to maturity, biomass NCPCRZ1 STMS (CT) 15 04 ORSph03, ORS30601 Pros see pair, took length, took per plant, seeds per pod, han ORS30603 NCPCRZ1 STMS (CT) 15 04 ORS30603 RCI holspot for drought tolenase ORS30603 CCM023B SSR (TT) 12N (TAA) 29 04 OR 2310556003 100 seed weight, OT holspot for drought tolenase ORS3060401 CCM023B SSR (TT) 12N (TAA) 29 04 OT OR 2310556003 CCM023B SSR (TT) 12N (TAA) 29 04 OT OR 2310556003 CCM024B SSR (TT) 13N (TCA) 20 07 OT Prost plant, tones response CCM024B SSR (TT) 14N (TCA) 20 07 OT Prost plant, tones response TA2 STMS (TT) 14N (TCA) 20 07 OT Prost plant, tones response TA2 STMS (TTA) 14N (TCA) 20 07 Drought stress response Drought stress response TA2 ST	L NCPGR142	STMS	(CT) 24	04	QTL	Drought tolerance
Answer OR3pool(). Iowenig, days to maturity, biomass CCR201 STMS (CT) 15 04 OR3pool(). Iowenig, days to maturity, biomass CCM0248 STM (CT) 15 04 OR3pool(). Oceaning, days to maturity, biomass CCM0248 STM (T) 121 04 OR3pool(). Oceaning, days to maturity, biomass CCM0248 STM (T) 121 04 OR3pool(). Oceaning, days to maturity, biomass CCM0248 STM (T) 121 04 OR3pool(). Oceaning, days to maturity, biomass CCM0248 STM (T) 121 04 OR3pool(). Oceaning, days to maturity, biomass CCM0248 STM (T) 121 04 OT OT OT CCM0248 STM (T) 121 04 OT OT OT OT CCM0249 STM (T) 135 OT 02 OT Drought treasmood OF CCM0261 STMS (T) 136 OT OT Drought treaserepores OT Drought treaserepoc	RCPGR127	STMS	(GA) 18	04	QR3pht03,	Pods per plant, 100 seed weight, root length, days to 50%
NCPCR21 STM C(T) 15 04 OR3100564003 Root length, pods per plant, seeds per pod have of the could t	ven				QR3pod01,	flowering, days to maturity, biomass
NCPCRC1 STMS (C1)15 04 OR3-sh003. Root length, pods per plant, seeds per pod, han CCM00249 SSR (1)12N (TAA) 29 04 OR3-sh003. Root length, pods per plant, seeds per pod, han CAM0249 SSR (1)12N (TAA) 29 04 OR1 OR3-sh003. CAM16 STMS (C1)21 0.2 OTL Pod filing, single seed weight. OTL hotspot for drought tolerance CAM16 STMS (C1)21 0.2 OTL Pod filing, single seed weight. CAM16 STMS (TAA) 30 0.7 OTL Pod filing, single seed weight. CAM28 STMS (TAA) 310 0.7 OTL Pod single seed weight. TAX1 STMS (TAA) 310 0.7 OTL Pod single seed weight. TAX1 STMS (TAA) 310 0.7 OTL Pod single seed weight. TAX1 STMS (TAA) 310 0.7 OTL Pod single seed weight. TAX1 (TAA) 310 0.7 OTL Pod single seed weight. TAX2 ST	nbe				QR3100sdw03	
Crownord Sixe word, Crownord Crownord Sixe (1) 12N (TAA) 29 Crownord Croword Crownord Crownord Crow	02 NCPGR21	STMS	(CT) 15	04	QR3pht03,	Root length, pods per plant, seeds per pod, harvest index and yield
Rate Classocial Clasocial Classocial Classocial <td>23)</td> <td></td> <td></td> <td></td> <td>QR3sdw01,</td> <td></td>	23)				QR3sdw01,	
CCM0249 SSR (1) 12N (TAA) 29 04 CR3100s40002 CCM0249 SSR (1) 12N (TAA) 29 04 CTL Pod filling, single seed weight, CTL hotspot for drought tolerance CA34 STMS (CT) 21 02 CTL Pod filling, single seed weight, CTL hotspot for drought tolerance CA31 STMS (CT) 21 02 CTL Pod filling, single seed weight, CTL hotspot for drought tolerance TA21 STMS (TTA) 37CAA (TAA) 30 07 CTL Pod filling, single seed weight, CTL hotspot for drought tolerance TA22 STMS (TTA) 37CAA (TAA) 30 07 CTL Pods filling, single seed weight, CTL hotspot for drought tolerance, drays TA22 STMS (TTA) 118CCA(TTA) 81T (TTA) 3 02 CTL Pods field TA22 STMS (TTA) 37CAA (TAA) 30 04 CTL Pods field for drought tolerance, drays TA22 STMS (TTA) 118CCA(TTA) 81T (TTA) 3 02 CTL Pods field for drought tolerance, drays TA22 STMS (TTA) 20 01 CTL Pods field for drought tolerance, drays					QR3pod01,	
CCM0249 SSR (1) 12N (TAA) 29 04 CR4100sc4002 100 seed weight, CTL hotspot for drought iderance GA13 STMS (G3) 19 0.4 CTL CTL hotspot for drought iderance GA13 STMS (G3) 19 0.4 CTL Drought stress response GA14 STMS (TC) 21 0.7 CTL Drought stress response CCeM006 EST-SSR (TC) 3 0.7 CTL Drought stress response TA22 STMS (TA) 37CAA (TA) 30 0.7 CTL Drought stress response TA22 STMS (TT) 3 0.7 CTL Drought stress response TA22 STMS (TT) 3 0.7 CTL Drought stress response CCeM0005 EST-SSR (TT) 3 0.7 CTL Drought stress response CCCM005 EST-SSR (TT) 2 0.4 CTL Drought stress response CCCM0055 EST-SSR (TT) 2 0.7 CTL Drought stress response CCCM0055 EST-SSR (TT) 2					QR3100sdw03	
GA24 STMS (GA) 19 OL CTL Conspit for drought tolerance GA11 STMS (C1) 21 0.2 CTL Pods per for drought tolerance CCA0006 EST-SSR (T1C) 21 0.2 CTL Pods per plant TA21 STMS (T1C) 36 0.7 CTL Pods per plant TA22 STMS (T1C) 96 0.7 CTL Pods per plant TA22 STMS (T1C) 118CCA(TTA) 8TT (TTA) 30 0.4 CTL Storady tolerance, drought tolera	ICCM0249	SSR	(T) 12N (TAA) 29	04	QR4100sdw02	100 seed weight, QTL hotspot for drought tolerance
GA11 STMS (C1) 21 02 CTL Pod filling, single seed weight TA21 STMS (TA) 5 0 0 CTL Pod filling, single seed weight TA21 STMS (TA) 5 0 0 CTL Drought stress response TA22 STMS (TA) 13C 0 0 CTL Stornal conductance, drought blearce, days TA22 STMS (TA) 13C 0 0 CTL Pods per plant TA22 STMS (TTA) 186 0 CTLar2 Seed yield Pods per plant CCeM0055 EST-SSR (TTC) 20 0 CTLar2 Seed yield Pods per plant CCEM0055 EST-SSR (TTO) 20 0 CTLar2 Seed yield Pods per plant CCEM0056 EST-SSR (TTO) 20 0 CTLar2 Seed yield Pods per plant CCEM0056 EST-SSR (TTO) 20 0 CTLar2 Seed yield Pods per plant CCEM0055 EST-SSR (TTO) 20 0	GA24	STMS	(GA) 19	04	QTL	QTL hotspot for drought tolerance
TCCeM006 EST-SSR (TC) 6 NA CTL Drought stress response TA21 STMS (TAA) 51 07 071 Somalal conductance, drought tolerance, days 1 TA22 STMS (TAA) 51 07 071 Somalal conductance, drought tolerance, days 1 TA22 STMS (TAA) 51 (TAA) 30 07 071 Somala conductance, drought tolerance, days 1 TA22 STMS (TTA) 37CAA (TAA) 30 07 071 Somala conductance, drought tolerance, days 1 TA22 STMS (TTA) 18CCA (TTA) 8TT (TTA) 3 02 01-1 Harvest index, canopy temperature CC6M0056 EST-SSR (TTA) 23 02 01-1 OTL Drought stress response CC6M0055 EST-SSR (TTA) 22 02 01 071 Drought stress response CC6M0055 EST-SSR (TTA) 22 02 01 Drought stress response CC6M0055 EST-SSR (TTA) 22 02 01 Drought stress response TA10 STMS (TTA) 23 02	GA11	STMS	(CT) 21	02	QTL	Pod filling, single seed weight
TA21 STMS (TAA) 51 07 QTL Stomatal conductance, drought blerance, days TA28 STMS (TA) 37 CAA (TAA) 30 07 QTL Poots per plant, number of branches per plant, number of branches, canopy transmenter, proceed size ICCeM0005 EST-SSR (TTA) 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ICCeM006	EST-SSR	(TTC) 6	AN	QTL	Drought stress response
TA28 STMS (TAA) 37CAA (TAA) 30 07 0TL Pods per plant, number of branches per plant, TA72 TA72 STMS (ATT) 36 0.1 0.1 Pods per plant, number of branches per plant, TA72 TA72 STMS (ATT) 36 0.1 0.1 0.1 Harvest index, canopy termperature torught stress response CCeM0005 EST-SSR (TD) 817 (TD) 20 0.1 0.1 0.1 Drunght stress response CCEM0005 EST-SSR (ATT) 16 0.4 0.1 Drunght stress response CCEM0005 EST-SSR (ATT) 22 0.2 0.1 Drunght stress response CCEM0005 EST-SSR (ATT) 22 0.2 0.1 Drunght stress response CCEM0005 EST-SSR (ATT) 22 0.2 0.1 Drunght stress response TA80 STMS (TTA) 22 0.2 0.1 Drunght stress response TA80 STMS (TTA) 22 0.2 0.1 Drunght stress response TA80 STMS (TAA) 22 0.2 0.1 Drungh	TA21	STMS	(TAA) 51	07	QTL	Stomatal conductance, drought tolerance, days to maturity
TA72 STMS (ATT) 36 QT Carl Bavest index, canopy temperature H5A08 SSR (TTA) 118CCA (TTA) 8TT (TTA) 02 QT-1 Harvest index, canopy temperature ICCeM0035 SST (TTA) 118CCA (TTA) 8TT (TTA) 02 QT-1 Harvest index, canopy temperature ICCEM0035 EST-SSR (TO) 9 01 QTL Drought stress response ICCEM0035 EST-SSR (TO) 16 OT Drought stress response ICCEM0035 EST-SSR (TA) 22 02 QTL Drought stress response ICCEM0035 EST-SSR (TA) 23 02 QTL Drought stress response ICCEM0035 EST-SSR (TA) 23 02 QTL Drought stress response ICCEM0035 EST-SSR (TA) 23 02 QTL Drought stress response IA10 STMS (TA) 23 02 QT Drought stress response IA110 STMS (TA) 23 02 QT Drought stress response IA110 STMS (TA) 23 02 QT Drought stress response IA110	TA28	STMS	(TAA) 37CAA (TAA) 30	07	QTL	Pods per plant, number of branches per plant
H5A08 SSR (TTA) 118CCA (TTA) 8TT (TTA) 3 0.2 0.1 Harvest index, canopy temperature ICCeM0036 EST-SSR (TTC) 9 0.1 0.11 Drought stress response ICCEM0036 EST-SSR (TTC) 9 0.1 0.11 Drought stress response ICCEM0036 EST-SSR (TTC) 20 0.1 0.11 Drought stress response ICCEM0035 EST-SSR (TTA) 22 0.2 0.11 Drought stress response ICCEM0035 EST-SSR (TTA) 22 0.2 0.11 Drought stress response ICCEM0035 EST-SSR (TTA) 22 0.2 0.11 Drought stress response ITA10 STMS (TTA) 22 0.2 0.11 Drought stress response ITA10 STMS (TTA) 22 0.2 0.11 Drought stress response ITA10 STMS (TTA) 22 0.2 0.11 Drought stress response ITA10 STMS (TTA) 22 Drought stress response Drought stress response ITA3 STMS <	TA72	STMS	(ATT) 36	04	QTLar2	Seed yield
CCG6M0040 EST-SSR (TC) 9 01 QTL Drought stress response ICC6M0055 EST-SSR (TC) 8TA (TC) 20 01 QTL Drought stress response ICC6M0055 EST-SSR (TC) 8TA (TC) 20 01 QTL Drought stress response ICC6M0055 EST-SSR (AATGA) 5 02 QTL Drought stress response ICC6M005 EST-SSR (AATGA) 5 02 QTL Drought stress response ICC6M005 EST-SSR (AATGA) 5 02 QTL Drought stress response ICC6M005 STMS (TTA) 22 02 QTL Drought stress response ICC6M005 STMS (TA) 21 02 QTL Drought stress response IA105 STMS (TA) 21 CC 10 CT Brought stress response IT10 STMS (TA) 21 C 10 Indeterminate stem growth TR10 STMS (TA) 21 C 10 Indeterminate stem growth IT10 STMS (TA) 24 <td>H5AO8</td> <td>SSR</td> <td>(TTA) 118CCA (TTA) 8TT (TTA) 3</td> <td>02</td> <td>Q1-1</td> <td>Harvest index, canopy temperature</td>	H5AO8	SSR	(TTA) 118CCA (TTA) 8TT (TTA) 3	02	Q1-1	Harvest index, canopy temperature
ICCeM005 EST-SSR (TC) 81A (TC) 20 01 CTL Drought stress response ICCEM005 EST-SSR (AT) 16 0.4 CTL Drought stress response ICCEM005 EST-SSR (AT) 16 0.2 CTL Drought stress response ICCEM005 EST-SSR (AT) 16 0.2 CTL Drought stress response ICCEM005 EST-SSR (AT) 16 0.2 CTL Drought stress response ICCEM005 EST-SSR (AT) 22 0.2 CTL Drought stress response TA10 STMS (TA) 21 0.2 C1.3 Fusarium with resistance, Seed size H3DO5 SSR (TA) 21 0.2 C1.1 Indeferminate stresponse TR19 STMS (TA) 24 0.2 CT Drought stress response TR10 STMS (TA) 24 0.2 CT Drought stress response TR10 STMS (TA) 24 0.2 CT Drought stress response TR10 STMS (TA) 24 0.2 CT Drought stress response TA106 STMS (TA)	ICCeM0040	EST-SSR	(TTC) 9	01	QTL	Drought stress response
ICCeM005 EST-SSR (AT) 16 04 CTL Drought stress response TA80 STMS (TTA) 23 02 CTL Drought stress response TA10 STMS (TTA) 23 06 St/tsf Single-/double-podding locus sf TA10 STMS (TTA) 22 02 CT Drought stress response TA10 STMS (TTA) 22 02 St/tsf Single-/double-podding locus sf TA10 STMS (TTA) 22 02 CT Drought stress response H3DO5 SSR (TAA) 41 03 Dt1 Indeterminate stem growth TR19 STMS (TAA) 24 02 CTL Drought stress response CCeM0035 EST-SSR (CT) 16 02 CTL Drought stress response TA34 STMS (TAA) 24 02 CTL Drought stress response TA06 STMS (TAA) 24 02 CTL Drought stress response TA106 STMS (TAA) 24 01 Q1-1	ICCeM0055	EST-SSR	(TC) 8TA (TC) 20	01	QTL	Drought stress response
R1 CCeM005 EST-SSR (AATGA) 5 0.2 CTL Drought stress response TA80 STMS (TTA) 23 0.6 Sit/sif Single-/double-podding locus sif TA10 STMS (TTA) 23 0.2 CCL, 3 Fusarium witt resistance, Seed size H3D05 SSR (TTA) 22 0.2 Focl, 3 Fusarium witt resistance, Seed size H3D05 STMS (TTA) 21 0.3 Dt1 Indeterminate stem growth TR19 STMS (TAA) 27 0.2 CCL Evarium witt resistance, Seed size TA34 STMS (TAA) 27 0.2 CTL Drought stress response CCeM0035 EST-SSR (CT) 16 0.2 CTL Rearium witt, Ascoriyta blight resistance, seed TA34 STMS (TAA) 26 0.7 Drought stress response Ersarium witt, Ascoriyta blight resistance, seed yield TA4 STMS (TAA) 44 0.1 O.1 Days to 50% flowering, seed yield TA4 TA4 STMS (TAA) 5 CTL Days to 50% flower	ICCeM0058	EST-SSR	(AT) 16	04	QTL	Drought stress response
TA80 TMS (TTA) 23 06 Sfl/sfl Single-/double-podding locus sfl TA110 STMS (TTA) 22 02 Foc1,3 Fusarium wilt resistance, Seed size H3D05 SSR (TTA) 22 02 Foc1,3 Fusarium wilt resistance, Seed size H3D05 SSR (TA) 21 03 Dt1 Indeterminate stem growth TR19 STMS (TA) 27 02 Foc4,3 Fusarium wilt, Ascochyta blight resistance, seed TR19 STMS (TA) 27 02 Ford Fusarium wilt, Ascochyta blight resistance, seed TA34 STMS (TA) 26 02 O1 Drought stress response Growth habit, plant height TA106 STMS (TAA) 26 06 OTL Root surface area, seed yield TA14 STMS (TAA) 26 OT OT-1 Days to 50% flowering, seed yield AT (A) 3TGATAATA A OT-1 Days to 50% flowering, seed yield AT (A) 3TGATAATA A OT-1 Days to 50% flowering, seed yield AT (A) 3TGATAATA A OT-1 Days to 50% flowering, seed yield	ICCeM005	EST-SSR	(AAATGA) 5	02	QTL	Drought stress response
Tatio STMS (TTA) 22 02 Focl,3 Fusarium wilt resistance, Seed size H3D05 SSR (TA) 41 03 Dt1 Indeterminate stem growth TR19 STMS (TA) 27 02 Focd,3 Fusarium wilt resistance, Seed size TR19 STMS (TA) 27 02 Focd,4 Fusarium wilt, Ascorbyta blight resistance, seed TR19 STMS (TA) 27 02 QTL Drought stress response TA34 STMS (TA) 26 07 QTL Drought stress response TA106 STMS (TA) 26 07 QTL Drought stress response TA105 STMS (TA) 26 07 QTL Drought stress response TA16 STMS (TA) 26 07 QTL Drought stress response TA14 STMS (TA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield AT AT AT (A) 3TGAT (ANT) 5 AT AT AT AT AT AT AT (A) 3TGAT (ANT) 5 AT Days to 50% flowering, seed yield	TA80	STMS	(TTA) 23	06	Sfl/sfl	Single-/double-podding locus sfl
H3D05 SSR (TAA) 41 03 Dt1 Indeterminate stem growth TR19 STMS (TAA) 27 02 Foc4 Fusarium wilt, Ascochyta blight resistance, seed TR19 STMS (TAA) 27 02 Foc4 Fusarium wilt, Ascochyta blight resistance, seed TR34 STMS (TAA) 26 02 QTL Drought stress response TA34 STMS (TAA) 26 03 Prostrate Growth habit, plant height TA166 STMS (TAA) 26 06 QTL Drought stress response TA166 STMS (TAA) 26 06 QTL Root surface area, seed yield TA14 STMS (TAA) 26 06 QTL Days to 50% flowering, seed yield TA14 STMS (TAA) 26 06 QTL Days to 50% flowering, seed yield ATT (A) 3TGATAATA ATT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield ATT (A) 3TGATAATA ATT (A) 3TGATAATA ATT (A) 3TGATAATA ATT (A) 3TGATAATA ASTMS (TAA) 45 07 QTL Days to 50% flowering, seed yield NCPGR184 <	TA110	STMS	(TTA) 22	02	Foc1,3	Fusarium wilt resistance, Seed size
TR19 STMS (TA) 27 02 Foc4 Fusarium wilt, Ascochyta blight resistance, seed ICCeM0035 EST-SSR (CT) 16 02 (CT Drought stress response TA34 STMS (AAT) 34 03 Prostrate Growth habit, plant height TA106 STMS (TAA) 26 06 (CT Root surface area, seed yield TA14 STMS (TAA) 26 01 (C1-1) Harvest index TA14 STMS (TAA) 26 06 (CT) Harvest index TA14 STMS (TAA) 26 06 (CT) Harvest index TA14 STMS (TAA) 22ATGA (TAA) 06 (CT) Days to 50% flowering, seed yield ATT (A) 3TGATAATA A 01 CT Days to 50% flowering, seed yield 10 TA25 STMS (TAA) 25 06 CT Days to 50% flowering, seed yield 10 TA26 ATT (A) 3TGATAATA 06 CT Days to 50% flowering, seed yield 10 TA25 STMS (TAA) 45 06 CT Days to 50% flowering, seed yield 10	H3DO5	SSR	(TAA) 41	03	Dt1	Indeterminate stem growth
ICCeM0035 EST-SSR (CT) 16 02 0TL Drought stress response TA34 STMS (ATT) 34 03 <i>Prostrate</i> Growth habit, plant height TA106 STMS (TAA) 26 06 0TL Root surface area, seed yield TA105 STMS (TAA) 26 01 0.1 0.1 Harvest index TA14 STMS (TAA) 26 01 0.1 0.1 1.1 Harvest index TA14 STMS (TAA) 26 07 01 0.1 0.1 1.1 Harvest index TA14 STMS (TAA) 26 01 0.1	TR19	STMS	(TAA) 27	02	Foc4	Fusarium wilt, Ascochyta blight resistance, seed colour
Ta34 STMS (AAT) 34 03 Prostrate Growth habit, plant height Ta106 STMS (TAA) 26 06 QTL Root surface area, seed yield Ta8 STMS (TAA) 26 01 Q1-1 Harvest index Ta14 STMS (TAA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield Ta14 STMS (TAA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield ATT (A) 3TGATAATA AAT (GAT) 4 06 QTL Days to 50% flowering, seed yield ATT (A) 3TGATAATA AAT (GAT) 4 06 QTL Days to 50% flowering, seed yield TA25 STMS (TAA) 32 06 QTL Days to 50% flowering, seed yield NCPGR184 STMS (TAA) 45 0 01 QT Days to 50% flowering, seed yield NCPGR184 STMS (TAA) 45 0 01 QT Days to 50% flowering, seed yield NCPGR184 STMS (TAA) 45 0 01 D1 D0-seed weight, harvest index	ICCeM0035	EST-SSR	(CT) 16	02	QTL	Drought stress response
Tatol6 STMS (TAA) 26 06 QTL Root surface area, seed yield TA8 STMS (TAA) 44 01 Q1-1 Harvest index TA14 STMS (TAA) 22ATGA (TAA) 06 QTL Parvest index TA14 STMS (TAA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AAT(GAT) 4 (TAA) 5 08 QTL Days to 50% flowering, seed yield IA25 STMS (TAA) 45 08 QTL 100-seed weight, harvest index IA NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index	TA34	STMS	(AAT) 34	03	Prostrate	Growth habit, plant height
TA8 STMS (TAA) 44 01 Q1-1 Harvest index TA14 STMS (TAA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield TA14 STMS (TAA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield AT (A) 3TGAT (AT) 5 06 QTL Days to 50% flowering, seed yield ATT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield ATT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 3TGATAATA 06 QTL Days to 50% flowering, seed yield AT (A) 4 (TAA) 5 08 QTL 100-seed weight, harvest index AT (A) 6 (GT) 16 01 QTL 100-seed weight, harvest index	TA106	STMS	(TAA) 26	06	QTL	Root surface area, seed yield
TA14 STMS (TAA) 22ATGA (TAA) 06 QTL Days to 50% flowering, seed yield 4T (A) 3TGAT (AAT) 5 (AT) 5 (AT) 3TGAT (AAT) 5 (AT) 4 (TAA) 5 (AT) 4 (TAA) 5 TA25 STMS (TAA) 45 (B) 4 (TAA) 5 (TAA) 45 (AT) 6 (GT) 16 (AT) 6 (GT) 16 NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index	TA8	STMS	(TAA) 44	01	Q1-1	Harvest index
4T (A) 3TGAT (AAT) 5 ATT (A) 3TGATAATA ATT (A) 3TGATAATA AAT (GAT) 4 (TAA) 5 TA25 STMS (TAA) 45 NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index 1 1 1 1 1 1 1 1 1 1 1 1 1	TA14	STMS	(TAA) 22ATGA (TAA)	00	QTL	Days to 50% flowering, seed yield
ATT (A) 3TGATAATA AAT (GAT) 4 (TAA) 5 TA25 STMS (TAA) 45 08 QTL Botrytis grey mould resistance NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index T			4T (A) 3TGAT (AAT) 5			
AAT (GAT) 4 (TAA) 5 AAT (GAT) 4 (TAA) 5 TA25 STMS (TAA) 45 08 QTL Botrytis grey mould resistance NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index			АГТ (А) ЗТGATAATA			
TA25 STMS (TAA) 45 08 QTL Bdrtytis grey mould resistance NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index			ААТ(GAT) 4 (ТАА) 5			
NCPGR184 STMS (AT) 6 (GT) 16 01 QTL 100-seed weight, harvest index 271 100-seed weight, harvest index 1 <td< td=""><td>TA25</td><td>STMS</td><td>(TAA) 45</td><td>08</td><td>QTL</td><td>Botrytis grey mould resistance</td></td<>	TA25	STMS	(TAA) 45	08	QTL	Botrytis grey mould resistance
	NCPGR184	STMS	(AT) 6 (GT) 16	01	QTL	100-seed weight, harvest index
	1425					Table 2: Continue

Table 2: Conti	nue				
NCPGR164	STMS	(CT) 6ca (CT) 14	08	QR3df01, QR3dm01	Days to 50% flowering, biomass
NCPGR136	STMS	(GT) 7gc (GT) ac (GT) ac (GT) ag (GT) 10	01	QTL	Yield
NCPGR49	STMS	(CT) 17c (CT) 3ttcttt (CT) 6tt (CT) 7	03	QTL	Plant height
ICCM0009b	SSR	(A)	11	01	QTL 100-seed weight
H1116	SSR	(GA) 20	06	QTL	Root surface area
CaM2187	SSR	(AT) 14n (AT) 9	08	QTL	Plant height
CaM1918	SSR	(AAT) 5n (ATT) 6	08	QR3df01,	Days to 50% flowering, days to maturity
				QR3dm01	
CaM1760	SSR	(TA) 9	06	QR3pht01	Plant height
CaM0399	SSR	(TC) 10n (TC) 7	06	QR3pht01	Plant height
CaM0393	SSR	(ATA) 17	01	QTL	Harvest index
CaM0046	SSR	(AT) 8	01	QTL	Drought tolerance
TA27	STMS	(TAA) 21	02	Foc-3, Foc-4	Fusarium wilt resistance

and high fixation index (Choudhary *et al.*, 2012). It indicated high levels of expected inbreeding among tested chickpea genotypes because chickpea is a self-pollinated crop and only 0 to 1.58% of outcrossing is reported (Ghaffari *et al.*, 2014). The rest of the six loci had a high level of observed heterozygosity compared to the expected heterozygosity with a low associated fixation index. It implied that higher mutation rates or inbreeding depression could be associated with these loci (Choudhary *et al.*, 2012).

Population structure

Model-based clustering method of the STRUCTURE software is valuable in showing the presence of population structure in tested genotypes, identifying different genetic populations, assigning individuals to populations and identifying pure and admixed individuals (Varshney et al., 2019). A population structure model without admixture was investigated using all 40 genotypes and 26 polymorphic markers for maximum likelihood by correlating allele frequency with a 5000-burn period with a run length of 50000 to 10 Markov Chain Monte Carlo (MCMC) with varying K from 1 to 15 with five iterations. The highest peak was observed at K = 4 with 30.78 Delta K value in Delta K analysis, indicating the presence of four populations in tested genotypes (Fig 1). At K=4, all genotypes were stratified into four populations viz., P1, P2, P3 and P4, representing 22., 22.5, 37.5 and 17.5% of genotypes used in structure analysis, respectively (Fig 2A, presents the inferred population structure). Population group 2 had clearly distingued the drought tolerant genotypes viz., ICC4958, JG74, JAKI9218, JG16, JG6, JG14 and JG11 from other studied chickpea genotypes. These distinguished drought tolerant chickpea genotypes had been already established as drought tolerant chickpea genotypes. The ICC4958 is a national check for drought tolerance in India, JG74 is an early maturing chickpea cultivar and established as most suitable chickpea cultivar for rainfed conditions of central region of India (Mannur et al., 2019), whilst JAKI9218 and JG16 are established as drought tolerant chickpea varieties. JG14 is identified as a heat tolerant chickpea variety (Dixit et al., 2019) and JG11 is established as a drought tolerant chickpea variety (Dixit, 2021).

In principal coordinate analysis (PCA) the first two Eigen vectors classified the studied genotypes into four major groups and distinguished the drought tolerant chickpea genotypes from investigated genotypes, which were comparable to observation obtained from STRUCTURE analysis (Fig 2B). The genotypes were divided into four structured populations, revealing that tested chickpea genotypes evolved from four population types demonstrating varying degrees of introgression from four types of ancestors into tested genotypes. It might be due to the resulting genotypes from independent evolutionary mechanisms including genetic drift, migration, mutation, selection and germplasm exchange that split them into discrete gene pools.

Analysis of molecular variance (AMOVA)

The four population groups generated from the structural analysis were subjected to AMOVA to estimate the percentage of genetic variation within as well as among individuals and populations (Table 4). The total genetic variance of genotypes was contributed by 7% variation within individuals, 77% among individuals and 16% among populations (Fig 3). Pairwise inbreeding coefficient within subpopulations (Fst) value (0.155) demonstrated significant variation among all the four pairs of populations, suggesting that all four groups were different from each other. The results acquired from AMOVA analysis agreed with the

Fig 1: Delta K analysis for assuming structured populations.

Fig 2: (A): Population structure, (B): Principal coordinate analysis of 40 chickpea genotypes.

Volume 46 Issue 11 (November 2023)

Prioritization of M	Icrosatellite Markers	Linked with	Drought	Tolerance A	Associated	Traits in	Chickpea	(Cicer	arietinum]	Ĺ.)
			<i>u</i>					\		

Table 3: Estima	ated genetion	c diversity p	parameters o	of 26 polymo	rphic micros	atellite loci	across 40 c	hickpea genot	ypes.	
Locus	Na	Ne	MAF	I	Ho	He	F	Fis	GD	PIC
TA21	2	1.72	0.70	0.61	0.00	0.42	1.00	1.00	0.42	0.33
TA27	2	1.69	0.71	0.60	0.07	0.41	0.81	0.67	0.40	0.32
TA28	3	1.77	0.73	0.77	0.00	0.43	1.00	1.00	0.43	0.39
TA72	2	1.28	0.88	0.37	0.00	0.21	1.00	1.00	0.21	0.19
H5AO8	2	1.40	0.83	0.46	0.00	0.28	1.00	1.00	0.28	0.24
ICCeM0040	2	1.98	0.54	0.69	0.12	0.49	0.74	0.75	0.49	0.37
ICCeM0058	2	1.22	0.90	0.32	0.20	0.18	-0.11	-0.25	0.18	0.16
TA80	3	2.10	0.63	0.87	0.00	0.52	1.00	1.00	0.52	0.45
H3DO5	2	1.95	0.58	0.68	0.00	0.48	1.00	1.00	0.48	0.36
TR19	4	3.11	0.43	1.21	0.17	0.67	0.74	0.70	0.67	0.61
TA34	2	2.00	0.50	0.69	0.00	0.50	1.00	1.00	0.50	0.37
TA106	3	1.59	0.78	0.68	0.00	0.37	1.00	1.00	0.37	0.34
TA8	3	1.96	0.68	0.85	0.00	0.49	1.00	1.00	0.49	0.44
TA14	2	1.95	0.58	0.68	0.00	0.48	1.00	1.00	0.48	0.36
TA25	3	1.57	0.78	0.65	0.00	0.36	1.00	1.00	0.36	0.32
NCPGR184	3	2.34	0.53	0.93	0.00	0.57	1.00	1.00	0.57	0.48
NCPGR164	3	2.00	0.63	0.80	0.00	0.50	1.00	1.00	0.50	0.41
NCPGR136	2	1.75	0.69	0.62	0.32	0.43	0.24	0.06	0.42	0.33
H1I16	3	1.58	0.76	0.59	0.02	0.36	0.93	0.94	0.36	0.30
CaM2187	2	1.72	0.70	0.61	0.00	0.42	1.00	1.00	0.42	0.33
CaM1918	2	1.34	0.85	0.42	0.00	0.25	1.00	1.00	0.25	0.22
CaM0046	2	1.98	0.55	0.68	0.00	0.49	1.00	1.00	0.49	0.37
TAA170	3	2.05	0.63	0.84	0.00	0.51	1.00	1.00	0.51	0.43
NCPGR127	4	3.57	0.40	1.33	0.00	0.72	1.00	1.00	0.72	0.67
NCPGR21	3	2.27	0.60	0.95	0.00	0.56	1.00	1.00	0.56	0.49
ICCM00249	2	1.99	0.53	0.69	0.00	0.49	1.00	1.00	0.49	0.37
Mean	2.5	1.92	0.66	0.71	0.03	0.44	0.89	0.88	0.44	0.37
SD	0.6	0.51	0.13	0.22	0.08	0.12	0.26	0.31	0.12	0.11
SE	0.1	0.10	0.03	0.04	0.01	0.02	0.05	0.06	0.02	0.02

Na= Numbers of alleles; Ne= Numbers of effective alleles; MAF= Major allele frequency; I= Shannon information index; Ho= Observed heterozygosity; He= Expected heterozygosity; F= Fixation index; Fis= Inbreeding depression; GD= Gene diversity; PIC= Polymorphic information content; SD= Standard deviation; SE= Standard error.

Table 4	4:	Summarv	AMOVA	table	of	populations	assigned	from structure	
		,				1 1			

Source	Df	SS	MS	Est. Var.	%
Among Pops	3	85.662	28.554	0.966	15%
Among Indiv	36	363.726	10.103	4.820	77%
Within Indiv	40	18.500	0.463	0.463	7%

observations found through the basic summary statistics, structure analysis and principal coordinate analysis, confirming both the presence of a statistically moderate genetic diversity among genotypes and a high level of population structure among genotypes.

The AMOVA results demonstrated that most variation among genotypes might be credited to variation among individual genotypes compared to variation among and within the population. It suggested that individual variation of genotypes might be more valuable for chickpea improvement programs. The PCoA result depicted that the chickpea genotypes were equally spread in all four quadrants regardless of their population structure. Population one was

exclusively grouped in quadrant I, showing their distinctness from the rest of the populations evenly spread in all four quadrants because of their highly diverse nature. Similar results have also been reported in various earlier studies using microsatellite markers (Mir *et al.*, 2022).

CONCLUSION

Trait linked microsatellite markers based on the molecular characterization of 40 chickpea genotypes showed presence of substantial genetic variation and population structure among genotypes. Summary statistics concluded that a moderate genetic variation was present among the genotypes. Marker NCPGR127 having the highest Na, Ne, He, Ht, gene diversity and PIC values followed by TR19. These markers might be used for selecting drought tolerant genotypes through marker assisted selection (MAS) approach. The population structure analysis identified four major population groups among studied genotypes clearly distinguished the drought tolerant genotypes viz., ICC4958, JG74, JAKI9218, JG16, JG6, JG14 and JG11 from other studied chickpea genotypes. The results obtained from the present investigation could thus be efficiently employed in the MAS programme to breed drought tolerant cultivar (s).

ACKNOWLEDGEMENT

The first author acknowledges the Indian Council of Agricultural Research (ICAR) for the award of the ICAR Junior/Senior Research Fellowship (F. No. EDN/1/25/2015-Exam Cell) for PhD degree programme.

Conflict of interest: None.

REFERENCES

- Asati, R., Tripathi, M.K., Tiwari, S., Yadav, R.K., Tripathi, N. (2022). Molecular breeding and drought tolerance in chickpea. Life. 12(11): 1846. https://doi.org/10.3390/life12111846.
- Bharadwaj, C., Tripathi, S., Soren, K.R., Thudi, M., Singh, R.K., Sheoran, S. *et al.* (2021). Introgression of "QTLhotspot" region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome. 14(1): e20076. https://doi.org/10.1002/tpg2.20076.
- Choudhary, P., Khanna, S.M., Jain, P.K. (2012). Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genetics of Molecular Research. 11: 891-905.
- Dixit, G.P. (2021). Sustaining Chickpea growth in India: Breeder's Perspective. Journal of Food Legumes. 34: 73-75.
- Dixit, G.P., Srivastava, A.K., Singh, N.P. (2019). Marching towards self-sufficiency in chickpea. Current Science. 116: 239-242.
- Doyle, J.J., Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin. 19: 11-15.
- Ghaffari, P., Talebi, R., Keshavarzi, F. (2014). Genetic diversity and geographical differentiation of Iranian landrace, cultivars and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiology and Molecular Biology of Plants. 20: 225-233.

- Gupta, N., Tiwari, S., Tripathi, M.K., Bhagyawant, S.S. (2021). Antinutritional and protein-based profiling of diverse desi and wild chickpea accessions. Current Journal of Applied Science and Technology. 40(6): 7-18.
- Li, Y., Ruperao, P., Batley, J., Edwards, D., Khan, T., Colmer, T.D., Sutton, T. (2018). Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Frontiers in Plant Science. 9: 190. doi: 10.3389/ fpls.2018.00190.
- Mannur, D.M., Babbar, A., Thudi, M., Sabbavarapu, M.M., Roorkiwal, M. et al. (2019). Super Annigeri 1 and improved JG 74: Two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (*Cicer arietinum* L.). Molecular Breeding. 39: 1-13.
- Mir, A.H., Bhat, M.A., Fayaz, H., Wani, A.A., Dar, S.A., Maqbool, S., Mir, R.R. (2022). SSR markers in revealing extent of genetic diversity and phylogenetic relationships among chickpea core collection accessions for Western Himalayas. Molecular Biology Reports. 49: 11469-11479.
- Mishra, N., Tripathi, M.K., Tiwari, S., Tripathi, N., Trivedi, H.K. (2020). Morphological and molecular screening of soybean genotypes against yellow mosaic virus disease. Legume Research. 45(10): 1309-1316. DOI: 10.18805/LR-4240.
- Mishra, N., Tripathi, M.K., Tiwari, S., Tripathi, N., Gupta, N., Sharma, A. (2021). Morphological and physiological performance of Indian soybean [*Glycine max* (L.) Merrill] genotypes in respect to drought. Legume Research. 1-9. DOI: 10.18805/ LR-4550.
- Mishra, N., Tripathi, M.K., Tripathi, N., Tiwari, S., Gupta, N., Sharma,
 A. (2022). Screening of soybean genotypes against drought on the basis of gene-linked microsatellite markers.
 In Book: Innovations in Science and Technology. 3: 49-61.
- Ningwal, R., Tripathi, M.K., Tiwari, S., Asati, R., Yadav, R.K., Tripathi, N., Yasin, M. (2023). Identification of Polymorphic ssr marken and diversity analysis in a set of desi chickpea genotypes. Biological Forum-An International Journal. 15(3): 45-51.
- Rathore, M.S., Tiwari, S., Tripathi, M.K., Gupta, N., Yadav, S., Singh, S., Tomar, R.S. (2022). Genetic diversity analysis of groundnut germplasm lines in respect to early and late leaf spot diseases and biochemical traits. Legume Research. 1-6. DOI: 10.18805/LR-4833.
- Sahu, V.K., Tiwari, S., Gupta, N., Tripathi, M.K., Yasin, M. (2020). Evaluation of physiological and biochemical contents in desi and Kabuli chickpea. Legume Research. 45(10): 1197-1208. DOI: 10.18805/LR-4265.
- Sharma, A., Tripathi, M.K., Tiwari, S., Gupta, N., Tripathi, N., Mishra, N. (2021). Evaluation of soybean (*Glycine max* L.) genotypes on the basis of biochemical contents and antioxidant enzyme activities. Legume Research. DOI: 10.18805/LR-467.
- Solanki, R.S., Babbar, A. and Tripathi, N. (2022). Genetic diversity analysis in *kabuli* chickpea (*Cicer arietinum* L.) genotypes based on quantitative traits and molecular markers. Bangladesh Journal of Botany. 51: 581-587.

- Varol, I.S., Kardes, Y.M., Irik, H.A., Kirnak, H., Kaplan, M. (2020). Supplementary irrigations at different physiological growth stages of chickpea (*Cicer arietinum* L.) change grain nutritional composition. Food Chemistry. 303: 125402. doi: 10.1016/j.foodchem.2019.125402.
- Varshney, R.K., Thudi, M., Nayak, S.N., Gaur, P.M., Kashiwagi, J., Krishnamurthy, L. *et al.* (2014). Genetic dissection of drought tolerance in chickpea (*Cicer arietinum* L.). Theoretical and Applied Genetics. 127: 445-462.
- Varshney, R.K., Thudi, M., Roorkiwal, M., He, W., Upadhyaya, H.D., Yang, W. *et al.* (2019). Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics. 51: 857-864.
- Yadav, R.K., Tripathi, M.K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., Sikarwar, R.S., Payasi, D.K. (2023). Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life. 13: 988. https://doi.org/ 10.3390/life13040988.