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ABSTRACT
Clustered regularly interspaced short palindromic repeats/CRISPR associated nuclease 9 (CRISPR-Cas9) system was instigated
first into eukaryotes in the last ten years are becoming productive and worldwide application for genome modification. Genome
engineering through insertion of foreign DNA insert have numerous disadvantages which could be overcome by use of DNA-free
genome editing. Various ways of DNA-free genome editing mediated by CRISPR/Cas systems are CRISPR/Cas delivery as
ribonucleoprotein, delivery of CRISPR/Cas as virus-like particles and agrobacterium-based delivery of CRISPR/Cas. Crop improvement
through DNA-free genome editing via CRISPR/Cas have been applied in rice, wheat, maize, tomato, soybean and rare species like
Nicotiana benthamiana etc. It is method of choice for precise genome editing without genome shuffle in an organism.
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DNA-free genome editing is a novel and speedy technology
in biological sciences that became a method of choice as it
is a means of precise genomic modification without
disturbance in genome of an organism. It opened the
possibility to generate genetic modified organism called as
non-GMO in classical biology and biotechnology (Malzahn
et al., 2017; Wolter and Puchta, 2017; Mao et al., 2019).
Conventional methods of gene editing include RNAi, zinc
finger, TALENs etc. Breakthrough in gene editing occurs with
the avent of RNA-guided endoDNAses followed by
identification of Cas9 system incurred from immune system
of bacterial paved novel path of targeted gene modifications.
CRISPR/Cas has revolutionized the world of gene editing
with surprising success in crop improvement through gene
editing and alteration (Arora and Narula, 2017).

CRISPR-Cas9 can be extended as clustered regularly
interspaced short palindromic repeats and CRISPR-
associated protein 9. CRISPR is DNA sequences occur in
the genomes of prokaryotic organism in reply of infection of
phages that invades bacteria. Cas genes are essential for
function of CRISPR and provide immunity in response to
attack of viruses and plasmids in bacteria and archaebacteria
(Barrangou and Marraffini, 2014; Sorek et al., 2013;
Barrangou, 2013). CRISPR with Cas9 enzymes assemble
as CRISPR-Cas9 system which is widely utilized to edit
genome of organism (Barrangou et al., 2007). CRISPR is
transcribed into pre-crRNA and cas genes becomes active
and functional to express as cas proteins which help in
processing of pre-crRNA into mature crRNA. Target nucleic
acid is recognized and destroyed combinedly by crRNA and
cas proteins (Koonin and Krupovic, 2014; Rath et al., 2015;
Kumari et al., 2021).

CRISPR-Cas9 genome editing needs single guide
RNA (sg RNA) that guide the Cas9 endonuclease to

specific region of the genomic DNA, resulting in double
stranded nicks in the target DNA. The CRISPR-Cas9
technique cleaves specific nucleotides via complementary
sequence with Cas9 protein and sgRNA (Peng et al., 2016).
Cas9 protein composed of two nucleic acid binding site
like a large recognition (REC) lobe and a small nuclease
(NUC) lobe that are linked by a helix bridge. REC controls
Cas9 specific function and NUC integrate two nucleases,
RuvC and HNH and protospacer adjacent motif (PAM). The
presence of PAM flanking the target sites is required for
target recognition and R-loop formation (Jinek et al., 2012;
Nishimasu et al., 2014; Anders et al., 2014; Jiang and
Doudna, 2017).
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Cas9 have endonuclease activity to produce double-
strand breaks (DSBs) in target DNA during bacterial immune
response (Mali et al., 2013; Bao et al., 2019). DSBs can be
repaired by non-homologous end joining (NHEJ) and
homology directed repair (HDR) process. NHEJ uses DNA
ligase IV to re-join the broken ends results in insertion or
deletion mutations (indels) and can resulting in frameshift
or introduction of a premature stop codon. HDR repairs the
DSBs based on a homologous complementary template and
results in a perfect repair. HDR is generally used for gene
knock-in in plants (Schiml et al., 2014). A transgenic DNA
can be generated by providing a donor DNA in Trans and
the double strand break will be repaired by the host cell.
This pathway is useful in generating loss-of-function/
knockout of the gene of interest (Costa et al., 2017) (Fig 1).

This technique has been applied in many species with
diverse goal Gene manipulation through DNA-free CRISPR/
Cas system have been targeted in commercial crops in
recent years. viz., Nicotiana benthaminiana, Capsicum annuum,
wheat, maize, rice, potato, soybean, banana, brassicaceae,
lettuce, tobacco etc. (Andersson et al., 2018; Murovec et al.,
2018; Gonzalez et al., 2019; Hu et al., 2019; Park et al.,
2019; Toda et al., 2019; Kim et al., 2020; Ma et al., 2020;
Sant’Ana et al., 2020; Wu et al., 2020). Various approaches of
Cas9/gRNA delivery have been utilized to attain editing
via  DNA-free system as for example,  CRISPR/Cas
delivering as ribonucleoprotein, virus-mediated delivery of
CRISPR/Cas, Agrobacterium tumefaciens delivery for Cas9.

CRISPR/Cas delivery as ribonucleoprotein
Foremost important method for DNA-free gene editing in
plants are assembly of CRISPR-associated protein (Cas)
ribonucleoprotein (RNP)-based genome editing. They are
easy, precise and convincing technique for genome editing
in crop plant which involves interaction between Cas9 and

gRNA. Cas9 is expressed and purified in bacteria known as
Escherichia coli and gRNA is generated via transcription or
synthesized chemically. Ribonucleoprotein assembly and
nanoparticles are acquired for transformation process (Park
and Choe, 2019; Wang et al., 2019). Ribonucleoprotein and
nanoparticles assembly are inserted in plant tissues via
protoplast fusion or particle gun methods. Sometimes, PEG-
mediated transfer and lipofections and electroporation are
also been utilized (Liang et al., 2018; Liu et al., 2020).

Delivery of CRISPR/Cas as virus-like particles
Utilizing virus like particle for DNA-free genome editing by
means of CRISPR/Cas system in plants has major
limitations. Positive-strand RNA and DNA viruses possess
limited capacity for foreign DNA insert replication renders
to deletion and loss of sequence due course of replication.
Furthermore, editing of small genome like CRISPR gRNA,
zinc-finger nuclease, meganuclease etc. is easy and
convenient with viral vectors. However, sequence size
restrictions would pose viral infection with this large system
difficult as size ofCRISPR/Cas system is more than 5.0 kb
(Marton et al., 2010; Honig et al., 2015; Cody and Scholthof,
2019; Ariga et al., 2020; Liu and Zhang, 2020). Utilization of
virus vectors for insertion of CRISPR/Cas9 in plants was
applied in Nicotiana benthamiana and potato Virus X was
employed to deliver Cas9 and gRNA to attain productive
DNA-free genome edited plants. Likewise, in wheat, barley
stripe mosaic virus was used to deliver guide RNA (Hu et al.,
2019; Ariga et al., 2020; Ma et al., 2020).

Agrobacterium based delivery of CRISPR/Cas
Agrobacterium based delivery of CRISPR/Cas cassette is
method of choice of transformation in plant species.This
method has been widely implicated in numerous plant
species where leaf, flower, callus were used as a targeted

Fig 1: CRISPR-Cas9 knockout of target gene sequence for crop improvement.
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explants usingT-DNA as integral part of Ti-plasmid consisting
of Cas9 and the gRNA (Gelvin, 2003; Sandhya et al., 2020).
Agrobacterium contamination could be applied for
generation of Cas9 and gRNA without antibiotics which
prevents production of DNA-free plants and integration of
T-DNA in genome of plant species. Transgenic-free
transgenic plant in tobacco was procured by targeting
phytoene desaturase (PDS) gene using this strategy (Chen
et al., 2018; He and Zhao, 2020). This method has
advantages as compared to CRISPR/Cas9 ribonucleo
proteins and particle gun, though it has limitations to not
applicable to all plant species. Acetolactate synthase gene
was edited by cytidine editor by Agrobacterium infection in
potato. Similarly, in tomato chlorsulfuron resistant plants
were produced by modification in acetolactate synthase
gene via point mutation through Agrobacterium mediated
delivery (Danilo et al., 2019; Veillet et al., 2019).

Crop improvement through DNA-free genome
editing via CRISPR/Cas
Rice
Several examples for trait improvement after utilization of
CRISPR based genome editing tools are illustrated here.
For example, rice genes, phytoene desaturase, betaine
aldehyde dehydrogenase and mitogen activated protein
kinase conferring stimuli for various abiotic stress were
modified by CRISPR/Cas9 mediated genomic modification.
Genes, OsDERF1, OsPMS3, OsEPSPS, OsMSH1, OsMYB5
responsible for drought tolerance were edited through
inducing targeted mutation in rice. Disease susceptibility
gene, OsSWEET13 has been knockout leads to bacterial
blight resistance Indica rice. Annexin gene has been
deactivated by CRISPR knocked out to confer cold stress
in rice (Shen et al., 2017; Kumari and Kumawat, 2021).

Multiplexed plant genome editing and transcriptional
regulation has been demonstrated in Arabidopsis and rice
and made easier by CRISPR/Cas9. Knock-out of OsSEC3A
gene increases salicylic acid content which caused resistance
against blast disease in rice. Grain weight (GW) were
upgraded by disruption of GW2, GW5 and GW6 genes,
negative regulators of grain shape in rice is proof that grain
weight is affected by grain shape. Grain size 3 (GS3) gene
was knocked off in japonica varieties of rice pertains to
increased grain length in T1 lines compared to wild type using
CRISPR-QTL editing tool (Xu et al., 2016; Yuyu et al., 2020).

Low cesium rice plants were formulated by inactivation
of the K+ transporter OsHAK 1 with the CRISPR/Cas9 system
and OsPRX2 for potassium deficiency tolerance. OsRR22,
O. sativa response regulator 22, gene was knocked out to
improve salt tolerance in rice the gene using the CRISPR/
Cas9-targeted mutagenesis. SD1 and photosensitivity 5
(SE5) genes were targeted to produce semi-dwarf elite lines
in rice. Genes (GS3, GW2 and GN1A) controls plant
architecture, seed size, yield and erect panicle were targeted
by bringing out knockouts by CRISPR/Cas9. Cooking and

eating quality determines market value and consumer’s
preference in rice. Wx gene essential for amylose synthesis
was mutated applying CRISPR/Cas9 system to produce high
amylose content in rice accessions. Mutant’s series with fine-
tuned amylose contents was created by specific base
alteration of Wx genes in rice. Targeted mutagenesis of
starch branching enzyme SBEIIb leads to generation of high-
amylose rice (Lacchini et al., 2020; Xu et al., 2020).

Likewise, aromatic rice was generated from unscented
variety, ASD16 by targeting the OsBADH2 through CRISPR/
Cas9. Knockoff of Vacuolar Iron Transporter genes, OsVIT2
to increase Fe distribution in embryo and endosperm. Sulfur
metabolisms molecular switch reduces arsenic and enhance
selenium in rice. Knock into the carotenoid biosynthetic pathway
and integration of CrtI and PSY genes into the target spot by
CRISPR/Cas9 resulted into high β-carotene in rice. GABA-
rich rice was created which contains seven-fold GABA by
truncating the C-terminal of the OsGAD3 by means of CRISPR/
Cas9 approach (Akama et al., 2020; Ashokkumar et al., 2020;
Dong et al., 2020; Chen et al., 2021; Sun et al., 2021).

Wheat
CRISPR/Cas9 genome editing for improvement of trait are
applied in wheat viz., three genes knockout by CRISPR/
Cas9 conferred powdery mildew resistance. Switching of
the three homologs of TaEDR1 gene leads to creation of
TaEDR1 lines in wheat having resistance to powdery mildew
(Gil-Humanes et al., 2017; Zhang et al., 2017). Similarly,
two genes in protoplasts were focussed to confer resistance
to head blight caused by Fusarium graminearum (Ansari et al.,
2020). Many genes were targeted by CRISPR/Cas9
technology for enhancing yield and protein content in wheat
(Wang et al., 2018; Hillary and Ceasar, 2019). Knockoff of
TaGW7 gene provides grain width enhancement and weight
in wheat (Wang et al., 2019). Likewise, gene editing using
CRISPR/Cas9 has been implicated to reduce gluten content
in wheat (Jouanin et al., 2020; Liu et al., 2021).

Maize
Gene editing of PSY1 gene in maize was done through
CRISPR/Cas9 resulted into mutant (psy1) with white kernels
and albino seedlings. ZmTMS5, thermo-sensitive genic male
sterile gene liable for male sterility in maize was selected
for CRISPR/Cas9 genome editing. ARGOS, genes upgrade
drought tolerance in transgenic maize because of their role
in negative regulation of ethylene response and signal
transduction in ethylene production pathway. Knockout of
the Wx gene generated twelve elite inbred lines with waxy
mutants in maize by CRISPR/Cas9 (Ansari et al., 2020; Gao
et al., 2020).

Tomato
CRISPR/Cas9 system have huge role for lengthening shelf
life in tomatoes. CRISPR/Cas9 targeted mutagenesis in ALC
gene was used to prolong shelf life in tomato lines. Disruption
of ripening inhibitor gene, RNA recognition motif-containing
gene confirms their role in fruit ripening in tomato by CRISPR



                             Agricultural Reviews194

Application of DNA-free CRISPR/Cas-mediated Genome Editing in Crops: A Review

gene editing. Fruit yield increases by gene knock out of
flowering repressor, SP5G gene, seedless fruit by somatic
mutations in the parthenocarpy related gene, SlIAA9,
increased shelf life by replacement of the dominant ALC
(Alcobaca) gene in tomato by CRISPR gene editing.
Yellow and purple tomato was created by mutation in
gene, PSY1 involves in carotene synthesis. Knockout of
genes involved in carotenoid metabolic pathway leads to
generation of lycopene rich tomato by CRISPR/Cas9 (Li
et a l. ,  2018:  Vu et al . , 2020; W ang et a l. ,  2020;
Chattopadhyay et al., 2021).

Soybean
CRISPR/Cas9 induced genome editing was first studied in
soybean by Cai et al. (2015) by editing two genes (GmFEI2
and GmSHR). Bao et al., (2020) described construction of
CRISPR/Cas9 plasmid for soybean gene editing. CRISPR/
Cas9 mediated base editing tool to induce single base
substitution in soybean was developed by Cai et al. (2020).
Two genes, GmIPK1 and GmIPK2 codes for enzyme related
to phytic acid biosynthesis pathway were edited by two
components CRISPR/Cas9 tool (Carrijo et al., 2021).

Arabidopsis
CRISPR/Cas9 system of genome editing was firstly applied
in Arabidopsis by Feng et al. (2013) where three genes,
brassinosteroid insensitive1, jasmonate-zim-domain protein1
and gibberellic acid insensitive were edited simultaneously.
Similarly, Mao et al. (2013) utilized CRISPR/Cas9 targeted
genome editing of albinism genesCHLI1 and CHLI2 with
AFLP marker.CRISPR/Cas9 system was utilized to provide
TuMV resistance and induced germline mutation in
Arabidopsis (LeBlanc et al., 2018; Zhang et al., 2018).

Potato
Potato and their excellent nutritive value like starch,
vitamin C, potassium, fibre, vitamins B, copper, tryptophan
etc. help in control many of the deadly diseases. It is
important crop worldwide which need recent research
atten tion  th rough imp lications o f biotechno logical
approaches. Waxy type of potato was developed through
mutation of granule-bound starch synthase gene and
multi-allele mutation was also created by knocking off
Aceto lactate Synthase1 gene (But ler et a l.,  2016;
Andersson et al., 2017).

Cotton
Targeted genome editing utilizing CRISPR/Cas9 system was
first applied in cotton by Janga et al. (2017). Later, CRISPR
induced gene truncation in two copies of Gh14-3-3d gene
was used to produce Verticillium resistant in upland cotton
germplasm (Zhang et al., 2018).

Rare species
In recent days, CRISPR/Cas9 technique has also been
utilized for improvement of tree with heterozygous genome
like hybrid poplar and resistant to cotton leaf curl multan
virus in Nicotiana benthamiana, by targeting CLCuMuV
genome. In, wild strawberry (Fragaria vesca) TAA1 genes
(responsible for auxin biosynthesis and ARF8 (regulates
auxin response factor 8) were edited to generate faster
growth plant. These studies demonstrate the use of
CRISPR/Cas9 genome editing for gene editing in wild
species and creating new variants of wild species rather
better in overall plan t phenotype essential for  the
commercial cultivation (Zhou et al., 2018; Yin et al., 2019;
Wang et al., 2020a) (Table 1).

Table 1: Genome editing through CRISPR/Cas9 technology in major food crops for various traits of interest.

Crops Target Gene (s) Trait References

Wheat TaGASR7 Grain length Hillary and Ceasar, 2019
Wheat TaGW7 Grain width and grain weight Wang et al., 2019
Wheat Gliadin Coeliac disease resistance in humans Liu et al., 2021
Rice OsBADH2 Aroma production Ashokkumar et al., 2020
Rice CrtI and PSY β-carotene Dong et al., 2020
Rice OsGAD3 GABA content Akama et al., 2020
Rice astol1 Selenium content Sun et al., 2021
Maize ZmIPK1A, ZmIPK and ZmMRP4 Reduced phytic acid Liang et al.,2014
Maize PSY1 Seed colour Zhu et al., 2016
Maize Zmzb7 Encodes IspH protein for methyl-D- Feng et al., 2016

erythritol-4-phosphate (MEP) Pathway
Maize ARGOS Drought tolerant Adhikari and Poudel, 2020
Maize Wx Waxy endosperm Gao et al., 2020
Tomato SlAGO7, gene Leaf traits Brooks et al., 2014
Tomato SlMYB12 Pink tomatoes Yang et al., 2019b
Tomato PSY1, ANT1 Yellow and purple tomatoes Chattopadhyay et al., 2021
Banana MaACO1 Shelf life Hu et al., 2020
Potato StPPO2e Tuber polyphenolsoxidase Gonzalez et al., 2021
Cotton GhFAD2 gene High oleic acid Chen et al., 2021
Nicotiana benthamiana CLCuMuV genome Resistant to cotton leaf curl multan virus Yin et al., 2019
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CONCLUSION
DNA-free genome editing mediated by CRISPR-Cas9 is
current and rapid developing technology in plant
biotechnology and biology. Various approaches rely on
delivery via ribonucleoprotein or virus-like particles or
Agrobacterium. Amongst all, Agrobacterium means of
delivery is most viable approach for gene/genome
editing.Although CRISPR-Cas9 technology has been utilized
for crop plants engineering but wide implementation of this
technology will require the development of protocols for plant
transformation, species-specific vectors and various
genomic resources in recent future.

Conflict of interest: None.
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