STABILITY ANALYSIS OF YIELD AND RELATED TRAITS IN CHICKPEA (CICER ARIETINUML.)

Asha Yadav, I.S. Yadav and C.K. Yadav
Department of Genetics and Plant Breeding
CCS Haryana Agricultural University, Hisar-125 004, India

Received: 13-11-2013
Accepted: 09-01-2014

Abstract

A set of fifty genotypes of chickpea (Cicer arietinum L.)were evaluated in three different environments during 2008-09 to determine the stability for seed yield plant height, number of branches per plant, number of pods per plant, number of seeds per pod, biological yield, seed yield per plant, harvest index (\%), $\mathbf{1 0 0}$ seed weight . Analysis of variance revealed significant differences among the genotypes for all the characters studied. Stability analysis showed that a major portion of genotype \times environment ($G \times E$) interaction was accompanied by linear component for number of branches per plant, number of pods per plant, number of seeds per pod, biological yield, seed yield per plant and 100 seed weight, whereas, non-linear portion predominantly contributed towards plant height, number of branches per plant and harvest index. Environment two (E2) was observed to be best for most of the yield attributing traits. Considering all the parameters, genotypes $\mathrm{H} 06-79$, H04-31, HK05-151, HK06-162, HK06-170, HK06-171, HK-2, HK-3, H06-32 having bi> 1 and $\mathrm{i}=0$ found promising for favourable environment, while genotype $\mathrm{HC}-3$ having $\mathrm{bi}<1$ and $\mathbf{S}^{-2} \mathrm{~d}_{\mathrm{i}}=0$ found promising for unfavourable environment and genotypes $\mathrm{H} 05-10, \mathrm{HK06}-152, \mathrm{HK06-155}$ having $\mathbf{b i}=1$ and $\mathbf{S}^{-2} \mathbf{d}_{\mathbf{i}}=\mathbf{0}$ across the environments.

Key words: Chickpea, G x E interaction, Phenotypic stability.

INTRODUCTION

Chickpea is an important winter season pulse crop in India and Asia and traditionally a low input crop grown in moisture stress environment of drought prone semi-arid and tropical regions. Large number of important high yielding varieties of chickpea have been evolved, yield of these varieties are not stable over environments which is one of the reason for poor adaptation. The yield of this crop fluctuates greatly as genotypes respond differently due to variation in the environments of its cultivation. (Bahl, 1988; Singh and J aiswal, 1990). Varietal adaptation to environmental fluctuation is important for stabilization of crop production, both over region and years. Therefore, there is an urgent need for genetically upgrading the yield potential along with stabilization of production. Thus, high productivity and stability are two most desirable features of any crop variety (Costa et al., 2004).Therefore, the present study was conducted to know the G x E
interaction of 50 genotypes of chickpea for seed yield and yield attributing traits.

MATERIALS AND METHODS

Fifty genotypes of chickpea (Table 1) were evaluated at experimental farm area of Pulses Section, Department of Plant Breeding, Hisar and Regional Research Station (CCS Haryana Agricultural University), Bawal. The crop at Hisar was sown on two different dates (9-11-2008 and 10-12-2008) and normal sown in Bawal (11-112008) thus creating three environments in a randomized block design with three replications in each environment. For each genotype the plot size was $9.60 \mathrm{~m}^{2}(4 \times 2.40 \mathrm{sq}$. meter) with a spacing of 30 cm between rows and 10 cm within a row. All the recommended agronomic package of practices was followed to raise the crop. At maturity, data was recorded on different characters from five competitive randomly selected plants from each genotype per replication in each environment. The

[^0]TABLE 1: Genotype's pedigree description

Genotype	Pedigree
H04-68	H91-35 \times H82-2 (m)
H04-75	HC-5 \times H91-36
H05-10	NARC $9006 \times$ HC 5
H05-11	H 89-171 \times HC 5
H 05-24	(HC $5 \times$ GNG 711) \times (PDG84-16 \times NARC 9006)
H05-29	IPC94-19 \times IPC 71
H06-07	H91-35 \times E100 Y m
H06-11	PBG98-5 \times H92-67
H06-15	PBG98-5 \times H92-67
H06-18	H90-64 \times H92-67
H06-30	H91-36 \times H92-67
H06-32	H91-35 \times HC 5
H06-41	H91-35 \times HC 5
H06-52	H89-59 \times HC 5
H06-55	CSG $8962 \times$ HC 5
H06-56	GNG $711 \times$ HC5
H06-63	H99-109 \times HC 1
H06-70	HC $5 \times \mathrm{E} 100 \mathrm{Ym}$
H06-75	H92-67 \times E 100 Ym
H06-79	Katila \times BG 362
H06-80	$(\mathrm{HC} 1 \times \mathrm{El} 100 \mathrm{Ym}$) $\times \mathrm{H} 91-36$
H04-31	(ICCV $10 \times$ ICC 4958) \times ICC11320
HC-5	H89-78 \times H89-84
$\mathrm{HC}-1$ $\mathrm{C}-235$	F61 61.
HC-3	$1550 \times \mathrm{El} 100 \mathrm{Ym}$
H06-97	HC $1 \times$ BGD 112
H06-98	HC $1 \times$ Vijay
H06-135	HC $1 \times$ PGD 84-16
H06-136	HC $1 \times$ ICC 4958
H07-12	C235 \times GL 94022
H07-93	HC $1 \times \mathrm{H} 89-84$
H07-23	H96-51 \times GL 94022
H07-86	$(\mathrm{HC} 1 \times \mathrm{GL} 94022) \times \mathrm{GL} 94022$
H07-88	HC1 \times ICCV 96029
H07-121 H07-169	(HC $5 \times$ ICCV 96030$) \times$ ICCV 96030
HK05-151	HK 92-94 \times HK 1
HK06-152	PG $95412 \times$ HC 3
HK06-155	(HK 92-94 \times HK 95-67) \times HK 1
HK06-158	HK 95-70 \times HK 1
HK06-159	HK 95-70 \times HK 1
HK06-160	HK 95-70 \times HK 1
HK06-162	HK 95-70 \times HK 1
HK06-168	
HK06-169	HK 95-70 \times HK 1
HK06-170	(HK 92-98 \times HK 95-67) \times HK 1
$\begin{aligned} & \text { HKO6-171 } \\ & \text { HK-2 } \end{aligned}$	PG $95412 \times \mathrm{HC} 3$
HK-3	ICCV $2 \times$ Surrutato 77

mean of the five plants in each replication was used for statistical analysis of all the characters. The environments and genotypes were assumed to be fixed for Statistical analysis. The phenotypic stability of genotypes was estimated using the parameters developed by Eberhart and Russell (1966) model.

RESULTS AND DISCUSSION

There exists a great agro-climatic variation in the environments due to uneven rainfall and variation in soil texture. Such environmental variation play a significant role in genotype x environment interaction. Hence, there is an urgent need to obtain stable genotypes which could give high and uniform yield of gram.

The pooled analysis of variance revealed the existence of considerable amount of genetic variability among genotypes and environments (Table 2) for all the traits. The experimental results indicated that mean squares due to genotypes, environment and $G \times E$ interaction were highly significant for all the 11 traits, indicating that genotypes interacted significantly with varied environmental conditions. This showed the presence of $G \times E$ interaction for all the traits. The present findings of $G \times E$ interaction are in agreement with earlier workers, (Samad et al., 1989; Rathore and Gupta, 1999; Chetia and Yadav, 2002; Rao and Rao, 2004; Sharma et al., 2007; Abbas et al., 2008; Yadav et al., 2010, Choudhary and Haque,2010).

With the availability of different analytical approaches, the most important conclusion which has emerged out from these studies is that bulk of G $\times \mathrm{E}$ interaction is often a linear function of the environmental means, although both linear and non linear functions play an important role in building up of total genotype \times environment ($G \times E$) interaction. The linear component of genotype x

TABLE 2: Stability analysis of variance for different characters studied (Eberhart \& Russell, 1966)

Source of variation	D.F.	Plant height (cm)	Number of branches/ plant	Number of pods/ plant	Number of seeds per pod	Biological yield/ plant(g)	Seed yield/ plant	Harvest index (\%)	100 seed weight (g)
Genotype	49	222.13^{++}	2.24	334.63++	$2.07{ }^{++}$	77.39+	$13.21{ }^{++}$	70.23	12.33^{++}
$\mathrm{E}+\mathrm{G} \times \mathrm{E}$)	100	98.45**	$8.59{ }^{++}$	$271.87{ }^{++}$	$0.07{ }^{++}$	76.62^{++}	$9.09{ }^{++}$	62.90 **	$11.25{ }^{++}$
Env.(L)	1	1331.81*+	662.88*+	13930.52^{++}	$1.51{ }^{++}$	3486.92^{++}	256.03^{++}	$689.20{ }^{++}$	264.97^{++}
$\mathrm{G} \times \mathrm{E}$ (L)	49	66.42 **	1.46 **	1165.60**,+	0.09**++	45.96**	8.89**,++	20.50*	$16.37^{* *,++}$
Pooled deviation	50	105.18**	2.50**	102.83**	0.03 **	$38.47{ }^{* *}$	$4.34 * *$	91.94**	1.15**
Pooled Error	294	5.81	0.68	33.79	0.02	8.49	0.96	15.14	1.49

$\overline{*, * *} \quad=\quad$ Significant mean square against pooled error at 5% and 1% probability level respectively.
,$+++\quad=\quad$ Significant mean square against pooled deviation at 5% and 1% probability level respectively.
TABLE 3: Stability parameters for different traits in chickpea

Genotypes	Plant height (cm)			No. of branchesper plant			No. of podsper plant			No. of seedsper pod			Biological yield per plant (g)			Seed yield per plant(g)			Harvest index (\%)			Seed weight(g)		
	Gen. Mean	$\mathrm{b}=1$	$\mathrm{S}^{2} \mathrm{~d}$	Gen. Mean	$\mathrm{b}=1$	$\mathrm{S}^{2} \mathrm{~d}$	$\begin{aligned} & \hline \text { Gen. } \\ & \text { Mean } \end{aligned}$	$\mathrm{b}=1$	$S^{2} \mathrm{~d}$	$\begin{aligned} & \hline \text { Gen. } \\ & \text { Mean } \end{aligned}$	$\mathrm{b}=1$	$\mathrm{S}^{2} \mathrm{~d}$	Gen. Mean	$\mathrm{b}=1$	$\mathrm{S}^{2} \mathrm{~d}$	$\begin{aligned} & \hline \text { Gen. } \\ & \text { Mean } \end{aligned}$	$\mathrm{bi}=1$	$\mathrm{S}^{2} \mathrm{~d}$	Gen. Mean	$\mathrm{b}=1$	$\mathrm{S}^{2} \mathrm{~d}$	Gen. Mean	$\mathrm{bi}=1$	$\mathrm{S}^{2} \mathrm{~d}$
H04-68	77.0	3.457	3.663	6.1	1.152	0.232	51.8	1.698	1.294	1.6	-0.278	1.199*	26.0	73	0.721	8.3	0.238	1	31.7	, $14 *$	0.000	15.6	3	41
04-75	4.2	1.842	0.531	6.1	0.618	0.074	72.8	-0.269	0.183	1.4	4.145	0.073	37.5	1.270	0.100	11.7	0.048	0.906	35.7	0.378	17.854	16.2	1.422*	0.000
H05-10	73.6	1.941	1.765	5.6	0.899	0.023	62	0.022	0.057	1.4	0.830	0.955*	30.7	1.156	0.068	10.4	1.225*	0.001	34.0	0.452	0.022	16.7	1.235	0.279
H05-11	66.8	3.071	2.796	6.0	0.585	0.041	65.0	1.749	1.596	1.4	-0.059	8.930*	30.6	1.747	0.095	10.2	0.926	2.166	32.8	0.250	1.737	18.0	1.486*	0.009
05-24	68.5	0.995	6.628	5.3	0.692	0.006	52.4	0.742	1.389	1.5	3.096	$1.408{ }^{*}$	25.1	0.869	0.944	9.4	0.593	3.484*	37.3	-0.479	0.134	15.3	1.801	0.908
H05-29	54.5	2.556	4.855	5.2	0.724*	0.001	46.4	0.738	0.062	1.8	-2.653	0.128	29.2	0.096	0.085	11.1	0.244	1.713	39.1	1.542	0.063	15.7	0.490	0.005
H06-07	81.4	4.001	1.480	6.2	0.695	0.014	62.2	0.459*	0.000	1.5	4.145	0.073	27.5	0.552	0.005	9.5	-0.051	0.225	34.7	0.482	1.753	16.4	1.634	0.042
H06-11	71.0	2.235	4.942	6.3	0.598	0.243	69.2	0.817*	0.010	1.6	2.780	1.279*	30.8	0.958	0.362	9.8	0.216	1.165	32.2	0.575	0.787	16.3	0.973	0.027
H06-15	72.8	1.703	4.678	5.8	0.581	0.544	57.8	0.422	0.045	1.6	2.822	5.758	29.6	0.754	0.00	9.8	-0.514	0.257	33.6	1.221	5.330	16.8	1.052	0.053
H06-18	83.3	4.154	2.854	5.7	1.038	0.008	61.0	1.631	0.634	1.2	1.309	0.520*	30.3	0.590	0.797	9.1	-0.106	0.171	31.0	0.540	5.721	15.6	1.478	0.115
н06-30	59.4	0.906	0.957	5.3	0.965	0.157	49.7	1.503	0.209	1.4	1.108	4.294*	22.1	1.322	0.041	6.8	1.269	0.016	31.2	0.583	0.091	14.5	1.271*	0.004
H06-32	60.8	2.277	2.468	5.3	0.802	0.027	56.6	1.636	0.489	1.4	1.291	1.597*	27.1	1.511*	0.010	8.4	0.984	0.178	30.9	1.299*	0.005	15.2	1.067	0.028
H06-41	66.7	2.635	0.668	5.1	0.931	0.035	59.3	3.210	1.860	1.3	4.145	0.073	20.6	1.341	0.393	8.9	0.909	0.055	48.1	0.462	36.133	15.6	1.344	0.082
H06-52	67.8	1.611	11.057	6.3	1.618	0.137	55	2.112	0.044	1.3	0.496	0.637*	26.8	1.184	1.454	10.6	-0.764	0.590	46.7	-0.669	119.03	14.3	1.505	0.038
H06-55	73.8	0.843	2.963	4.9	1.103*	0.007	62	0.938	0.054	1.8	-1.362	0.821*	23.2	0.961	0.45	7.8	0.918	0.136	34.3	-1.033	4.678	15.1	1.613	0.644
H06-56	60.0	1.634	5.209	5.4	0.889*	0.002	69.6	1.134	0.160	1.5	2.301	0.766*	24.2	0.555	0.626	8.4	0.413	0.126	36.1	1.910	2.345	17.4	0.835	0.232
H06-63	51.1	1.911	2.978	6.0	1.361	0.257	61	1.419*	0.009	1.5	0.662	1.133^{*}	23.7	1.341	0.000	9.1	0.449	0.216	40.0	1.950	5.346	16.0	1.405	0.074
H06-70	66.9	2.057	10.662	5.6	1.339*	0.004	69.6	1.751	0.161	1.4	2.780	1.279*	32.5	0.970	0.043	10.7	0.286	1.028	33.2	0.059	2.246	15.9	0.376	0.002
H06-75	77.9	3.172*	0.001	7.0	1.103	0.634	67.5	1.490	0.173	1.2	2.579	0.048	28.4	1.214*	0.001	8.0	1.337	0.056	28.3	0.181	0.247	15.6	1.58	0.000
H06-79	46.9	-0.727	0.015	6.2	0.918	0.103	64.6	0.227	0.115	1.7	2.378	2.467*	26.9	1.447	0.016	12.1	3.242	0.990	44.0	-1.033	3.639	17.6	0.766	0.005
H06-80	54.0	-0.769	0.051	6.5	0.584	0.163	55.8	-0.148	0.208	1.7	-2.139	2.885*	34.7	1.833	1.732	11.6	3.284	0.573	34.7	1.589	15.040	17.3	1.178	0.076
H04-31	55.1	-2.833	1.460	6.4	1.205*	0.000	53.8	1.792	1.168	1.7	-1.013	0.028	27.8	0.841*	0.004	12.5	2.244	0.862	44.1	-1.796	1.402	13.8	0.778	0.103
HC-5	62.6	0.435	9.078	5.8	1.086	0.121	54.5	0.076	0.073	1.2	1.070	0.721*	28.1	0.595	0.122	9.2	0.331	0.363	33.0	0.283	0.058	17.0	1.063	0.189
HC-1	54.5	0.598	2.566	6.0	1.423	0.026	56.3	1.045*	0.007	1.8	0.809	0.621*	22.7	0.876	0.003	8.0	0.140	0.009	36.7	1.544	2.282	14.2	1.737	0.208
C-235	58.2	-1.537	1.480	9.0	1.078	0.698	58.8	-0.330	0.603	1.9	0.295	0.305*	23.0	-1.056	0.016	9.8	-1.572	0.109	43.9	0.403	0.113	16.7	5.607	0.485
HC-3	63.8	-0.599	1.029	7.5	1.102	0.274	55.5	-0.705	1.101	1.5	0.517	0.935*	34.4	-2.529	0.110	15.4	-3.919	2.176	45.2	0.380	0.566	22.8	-5.236	0.009
H06-97	45.5	-0.450	1.502	5.8	0.607	0.483	31.5	1.404	0.215	1.7	0.479	0.065	30.3	-0.003	6.431	6.3	0.244	0.007	24.8	3.325	10.380	13.6	1.222*	0.001
06-98	6.8	1.183	11.175	7.0	1.070	1.274	8. 3	0.940	0.491	1.4	-1.270	0.252	27.2	0.659	0.005	8.2	0.884	0.724	30.8	2.034	3.835	14.5	1.806	0.088
H06-135	66.8	-1.046	10.291	5.9	0.321	0.681	40.9	0.683*	0.000	1.2	2.744*	0.002	20.5	1.434	0.018	6.8	0.532	0.145	35.8	3.861	0.897	16.2	1.497*	0.005
H06-136	59.9	1.450	0.222	6.9	0.700	0.616	45.0	1.033	0.022	1.4	0.092	0.163	26.6	1.602	0.034	8.6	0.786	0.123	33.7	2.161	0.573	16.3	1.312*	0.002
H07-12	63.1	-0.583	0.481	6.5	0.302	0.199	36.1	1.211*	0.002	1.3	1.823	0.384	22.1	0.913*	0.003	6.7	1.669	0.413	31.0	1.311	8.443	17.1	1.653*	0.011
H07-93	63.0	0.180	31.999*	6.9	0.951	0.013	40.3	0.228	0.048	1.2	-1.749	0.574	25.5	1.346	0.046	7.2	1.589	0.116	29.7	2.074	3.453	14.2	1.126	0.030
н07-23	63.0	3.489	1.581	5.8	1.388	0.078	36.7	0.878	0.025	1.6	-1.070	0.721	25.9	-0.176	2.911	8.0	0.530	0.334	34.7	-2.345	10.093	14.8	1.065	0.074
07-86	67.8	0.994	0.079	4.9	1.052	0.053	41.8	0.163	0.286	1.4	1.474	0.207	24.4	0.848	0.075	7.5	0.686	0.223	30.9	0.568	0.005	15.7	1.169*	0.003
H07-88	69.8	1.047	0.047	5.1	0.636	0.007	41.3	0.457	0.868	1.2	2.671*	0.034	23.9	1.061	1.362	8.3	0.262	3.905*	36.6	0.223	3.247	16.2	0.884	0.099
H07-121	57.6	-0.732	16.935	5.1	0.725	0.010	41.1	0.380	0.143	1.7	-3.740	0.442	20.9	1.088	0.642	7.8	0.808	0.529	39.4	3.214	1.758	17.6	5.739	0.229
H07-169	58.2	-1.570	0.006	6.8	1.269*	0.002	45.6	1.305*	0.001	1.3	0.848	0.189	32.7	1.109	1.065	10.9	1.929	2.282	33.7	0.954	0.848	24.2	0.944*	0.003
HK05-151	62.3	0.018	0.054	6.9	1.457	0.053	50.5	1.663	0.084	1.2	0.257	0.449	37.6	1.516	0.015	13.0	2.583	0.445	34.6	1.157	5.402	30.6	0.826	1.205
HK06-152	58.2	-1.042	0.870	6.2	1.539	0.036	53.5	1.355	0.026	1.2	2.579	0.048	35.4	1.134	0.196	11.8	1.308*	0.004	33.7	0.063	0.106	27.5	0.757	0.157
HK06-155	66.1	1.244	5.578	6.5	0.902	0.010	40.6	0.724	0.093	1.1	0.700	0.025	32.0	0.343	0.618	12.2	1.718	0.186	39.1	1.113	16.616	31.9	0.751	0.012
HK06-158	59.1	2.085	2.011	6.9	1.167	0.013	37.4	1.191	0.096	1.1	0.074	0.019	30.9	2.177	0.628	11.2	2.051	0.431	36.8	2.024	0.037	33.6	0.855	0.364
HK06-159	62.2	2.611	6.609	6.2	0.713	0.018	35.2	0.980	0.340	1.2	1.196	0.409	33.2	1.766	0.053	10.3	2.115	0.787	31.4	2.079	3.565	33.	1.403	0.080
HK06-160	60.0	1.668	6.788	6.3	1.503*	0.013	39.2	1.209	0.223	1.3	2.062	0.558	31.7	1.363	1.071	11.3	0.085	0.626	36.0	1.692	1.407	33.0	1.637	0.121
HK06-162	52.8	-1.214	1.833	6.9	1.188	0.021	47.6	1.591	0.159	1.3	1.840	1.350	34.8	1.681	1.079	12.6	2.968	2.544	37.1	2.666	9.607	28.5	2.084	0.337
HK06-168	57.3	-1.02	1.855	8.3	0.847	1.828	44.5	1.427	0.293	1.2	2.579	0.048	32.3	1.589	0.206	10.6	2.345	0.918	32.4	1.510	4.615	24.3	-4.026	1.843
HK06-169	59.5	1.508	6.783	6.0	1.759	0.089	4.3	1.394	1.036	1.3	1.840	1.350	34.1	0.279	1.360	11.5	1.151	7.877*	32.6	1.821	6.104	25.7	0.799	0.087
HK06-170	64.6	1.286	0.389	7.4	1.186*	0.000	57.3	2.483	0.751	1.1	0.939*	0.001	38.3	1.941	0.035	13.9	2.808*	0.031	36.5	1.110	2.646	28.1	1.235	1.215
HK06-171	58.5	1.017	3.400	6.1	1.246*	0.001	44.9	0.084	0.178	1.2	0.056	0.463	30.0	1.551	0.041	12.5	3.230	0.251	42.9	1.601	7.082	23.9	-2.385	0.016
HK-2	54.6	-0.176	0.114	6.1	1.207	0.026	49.1	1.931	0.193	1.5	-0.405	0.155	33.0	2.021	0.126	12.0	2.608	0.315	36.7	1.325	2.063	22.7	1.345	1.135
HK-3	62.6	-0.434	0.012	8.1	1.176	0.083	45.0	0.130	1.179	1.3	1.926	1.026	42.5	2.190	1.346	13.4	2.741*	0.044	34.2	2.369	4.087	27.2	-3.851	0.045

environment ($G \times E$) interaction was significant for number of pods per plant, seeds per pod, 100-seed weight and seed yield per plant when tested against pooled deviation, indicating that major portion of interaction was linear in nature and prediction over environments was possible only for these traits. The linear component of genotype \times environment ($G \times$ $E)$ interaction was non significant against pooled deviation for remaining traits viz., plant height, number of branches per plant, biological yield per plant and harvest index which indicated that prediction for consistency in performance of the genotypes was not possible. However, relative magnitude of both these portions i.e., linear and non linear vary with the traits. In the present study the linear portion was higher in magnitude for all the traits except plant height, number of branches per plant and harvest index. This indicated the preponderance of linear portion for most of the economic traits and thus performance of the genotypes can be predicted across environments with greater reliability. Predominance of linear component of $G \times E$ interaction for different characters was also reported by Singh and Kumar, (1994); Popalghat et al., (1999); Sirohi et al., (2001), Rao and Rao, (2004); Verma et al., (2008) in chickpea.

The stability parameters i.e., mean (\bar{X}), regression coefficient (bi) and deviation from regression ($\mathrm{S}^{-2} \mathrm{~d}_{\mathrm{i}}$) were estimated for each genotype separately for each trait. Both linear regression (bi) and deviation from regression ($\mathrm{S}^{-2} \mathrm{~d}_{\mathrm{i}}$) components of genotype \times environment ($G \times E$) interaction should be considered along with mean while judging the phenotypic stability of a genotype (Table 3).

An examination of two parameters viz., bi and $\mathrm{S}^{-2} \mathrm{~d}_{\mathrm{i}}$ di for individual genotypes revealed that plant height and harvest index were observed to be the most stable traits for maximum number of genotypes followed by biological yield, number of pods per plant, seed yield per plant, number of branches, 100 seed weight and number of seeds per pod. Predictable response among the genotypes was found to be larger for days to maturity, whereas, plant height exhibited the lowest. Some workers, however, demonstrated that even for unpredictable traits, prediction could still be made when the stability parameters of individual genotypes were considered (Kapoor, 1972; Singh, 1981 and Sandhu, 1983:,

Choudhary and Haque ,2010). Similar conclusions could be drawn when the stability parameters of individual genotypes were considered in the present study.

Twenty genotypes showed un-predictable response across the environments for number of seeds per pod ,whereas, none of the genotype showed this type of response for number of branches per plant, number of pods per plant, biological yield and 100 seed weight. None of the genotypes had both predictable and non-predictable response across the environments.

The results indicated that genotypes showing high and stable seed yield also exhibited either high or above average response for a number of yield contributing traits. It can, therefore, be suggested that while making selection, attention should be paid to the phenotypic stability of the traits associated with seed yield and the genotypes having average response for different traits could be identified as stable genotypes across the environments.

The simultaneous assessment of three stability parameters viz., (\bar{X}), bi and $\mathrm{S}^{-2} \mathrm{~d}_{\mathrm{i}}$, and mean revealed that genotypes H06-79, H04-31, HK05151, HK06-162, HK06-170, HK06-171, HK-2, HK3 for yield per plant; H05-11, H06-135, H07-12 for 100 seed weight; H06-07, H06-75, H K06-168, H0788, H06-41 for seeds per pod; H05-11, H06-52, H06-18, H06-70 for number of pods per plant, H0675 (Tall) for plant height; HK05-151, HK05-152, HK06-160, H K06-169, for branches per plant; H0511, HK06-159 for biological yield; exhibited high mean performance, above average response and were observed to be stable too. Hence these genotypes could safely be termed as ideal for favourable environmental conditions.

The desirable genotypes having Xi>X, $\mathrm{bi}=1.0$ and $\mathrm{S}^{-2} \mathrm{~d}_{\mathrm{i}}=0$, for average environments were H05-10, HK06-152, HK06-155 for seed yield per plant; H04-75, H06-30, H06-97, H06-136, H0786, H07-169, HK06-155, HK06-159, for 100 seed weight; H06-97, HK06-170 for seeds per pod ; H 0431, C-235, HK-3, for number of branches per plant; H06-63, HC-1, H07-169, H06-11, H06-07, H0655, for number of pods per plant; H07-88, HK05151, HK-3, H06-80 for plant height; H07-93, HC5, HC-1, H06-07, H04-31, H06-15, H06-70, H 0675, H06-32, H06-63, H06-98, for biological yield;

H04-68, H06-41, C-235, HC-3 for harvest index. These genotypes were observed to be stable and generally suitable across the environments.

For unfavourable environmental conditions the desirable genotypes were HC-3 for yield per plant; HC-3, H06-70, H05-29, HK-3, HK06-177 for 100 seed weight; H07-169, for plant height; H05-29 for seeds per pod ; HK06-171, C-235, HC-5, H06-79, H04-75, H05-10 for number of pods per plant; C235, HC-3, H07-23, H06-97, H05-29 for biological yield. These genotypes were expected to perform better under poor environmental conditions.

Considering the seed yield and its contributing traits, genotype $\mathrm{H} 05-10$ was observed
to be stable for six traits, genotypes H06-79, HK06170 for five traits, genotypes $\mathrm{H} 06-32$ and $\mathrm{H} 06-41$, HK06-171, HK06-155 for four traits as indicated by the high mean performance, average to above average response and non significant values. The performance of these genotypes could be predicted across the environments. Some other genotypes viz., $\mathrm{H} 06-79$ and $\mathrm{H} 04-31$ and $\mathrm{HC}-3$ were also observed to be stable across the environments.

The genotypes included in the present study did not exhibit uniform stability and responsiveness pattern for the different traits. The stability and response appeared to be specific for individual traits of an individual genotype and not common for all the traits.

REFERENCES

Abbas, G., Atta, B.M., Shah, T.M., Sadiq, M.S. and Haq, M.A. (2008). Stability analysis for seed yield in mungbean (Vigna radiata L.). J . A gric. Res. 46: 223-228.
Bahl, P.N.(1988). Pulse Crops, [Baldev, B., Ramanujain, S. and J ain, H.W. (Eds.)]. Oxford \& IBH Publishing
Co. Pvt. Ltd., New Delhi pp 95-131..
Chetia, S.K. and Yadav, R.K. (2002). Phenotypic stability of yield and its components in pea (Pisum satiuum L.). Res. Crops. 3: 606-614
Choudhary,R.N. and H aque, M.F.(2010).Stability of yield and its components in chickpea (Cicer arietinum L.) for chhotanagarpur region. Legume Res. 33: 164-170
Costa, J.M., Bollero, V.S. and Pandey, P.L. (2004). Stability for grain yield of barley genotypes under rainfed conditions. Adv in Plant Sci. 12: 27-30.
Eberhart, S.A. and Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Sci. 6: 35-40.
Kapoor,R.L.(1972). A study of adaptability and gene action of some quantitative characters in Bajra [Pennisetum typhoides(Burmp.)Sandh].Ph.Dthesis,HAU,Hisar.
Popalghat, G.R., Patil, J.V., Deshmukh and Mhase, L.B. (1999). Stability for yield and its components in chickpea (Cicer arietinum L.). Legume Research. 22: 254-258.
Popalghat, G.R., Patil, J.V., Deshmukh, R.B. and Mhase, L.B. (2001). Genotype \times Environment interaction for seed yield and seed quality parameters in chickpea. Legume Res. 24: 248-251.
Rao, M. and Rao, Y. (2004). Stability analysis in chickpea (Cicer arietinum L.). Legume Res. 27: 235-242.
Rathore, P. and Gupta, V.P. (1999). Effect of environmental measures on stability analysis in pea. Crop. Improv. 26: 226-231.
Samad, M.A., Fautrier, A.D. and Mc Neil, D.L. (1989). Phenotypic stability of formation and abortion of reproductive organs and other yield factors in pea and their values for genetic improvement. New Zealand J ournal of Crop and Horti Sci. 17: 129-136.
Sandhu,H.S.(1983).Studies on Genotype X Environment interaction in cotton. M.Sc. Thesis, HAU, H isar
Sharma, D.K., Billore, M., Singhal, H.C. and Kataria, V.P. (2007). Adaptation analysis for yield and its attributes in chickpea (Cicer arietinum L.). Legume Res. 30: 103-107.
Singh, O. and Kumar, S. (1994). Phenotypic stability of yield and related characters in desi gram (Cicer arietinum L.) Indian J. Agric. Sci., 64: 815-820.
Singh, R.P. and J aiswal, H.K. (1990). Genetic improvement of Pulse crops, pp 147-164. Nizam, J ., Khan, I.A. and Farook, S.A. (Eds.) Premier Publishing House, Hyderabad, A.P.
Singh,P. (1981).Phenotypic stability in upland cotton. Curr.Sci. 50(23):10-34.
Sirohi, A., Singh, A., Panwar, K.S., Chauhan, K.C. (2001). Genotype x Environment interaction and phenotypic stability in gram (Cicer arietinum L.). Indian J ournal of Agricultural Sciences. 71: 411-413.
Verma, A.K., Singh, D., Kumar, J., Rizvi, A.Z., Andrews, M. and Yadav, S.S. (2008). Impact of genetic divergence on the expression of individual trait in chickpea (Cicer arietinum L.), American- Eurasian J ournal of Sustainable Agriculture. 2: 205-211.
Yadav, S.S., Verma, A.K., Rizvi, A.H., Singh, D., Kumar, J. and Andrews, M. (2010). Impact of genotype \times environment interactions on the relative performance of diverse groups of chickpea (Cicer arietinum L.) cultivars. Archives of Agronomy and Soil Science. 56: 49-64.

[^0]: *Corresponding author's e-mail: asha.agrarians@ gmail.com

