

MICROPROPAGATION OF STRAWBERRY (*FRAGARIA X ANANASSA* DUCH.)

Murari Lal, Suneel Sharma and M. V. Hegde

Department of Horticulture,

CCS Haryana Agricultural University, Hisar - 125 004, India

ABSTRACT

Efficient methods for shoot regeneration, proliferation and rooting from runner tip explants of strawberry (*Fragaria X ananassa*) cultivars Chandler, Oso Grande and Ofra were developed. After seven weeks of incubation maximum regeneration of 100 per cent regeneration was recorded in cv. Ofra on MS medium with 4 mg l⁻¹ BAP. On Knop's medium maximum regeneration (70.0 %) was observed on K₄ (Knop's + 4.0 mg l⁻¹ IBA + 0.4 mg l⁻¹ BAP + 0.4 mg l⁻¹ GA₃) medium. In all cultivars maximum mean number of shoots per explant was observed in M₉ medium (MS + 4.0 mg l⁻¹ BAP). Among cultivars maximum mean number of multiple shoots (13.8±3.6) and range of shoots per explant (4-36) was observed in Ofra cultivar. Maximum rooting (100 %) was observed on MS media (Full or half strength of MS basal salts) with 1.0 mg l⁻¹ IBA. Whereas, in case of Knop's based media maximum rooting of 60.0 per cent was observed on K₄ medium.

INTRODUCTION

Commercial scale propagation by runners has been widely used in the strawberry industry. However, plants raised through runners suffer from viral diseases. Micropropagation is a tool in this direction to have true to type, disease free and quality plants throughout the year. The effectiveness of meristem culture in producing virus free material is reported to vary among the cultivars (Popova *et al.*, 1985). Plants have been regenerated from meristematic callus (Jones *et al.*, 1988), anthers (Laneri and Damiano, 1980) and immature embryos (Wang *et al.*, 1984). Methods have also been developed for efficient shoot regeneration from leaf and runner tissues (Liu and Sanford, 1988). Presently, availability of good quality planting material of a required cultivar in a large quantity is a major limitation in expansion of strawberry cultivation in northern India and considering these problems the study was planned to develop an efficient protocol for plant regeneration in strawberry (*Fragaria X ananassa* Duch.).

MATERIAL AND METHODS

The present investigation was carried out in tissue culture laboratory of Department

of Horticulture, CCS Haryana Agricultural University, Hisar, India. The runner tips (2-5 mm in length) of disease free plants of cvs. Chandler, Oso Grande and Ofra were excised during the month of October from the field grown plants. Explants were first washed under running tap water, and thereafter surface sterilized with 70 per cent aqueous ethanol (v/v) for 1-2 minute followed by 0.1 per cent aqueous solution of HgCl₂ (w/v) for 2-10 minutes. Finally explants were thoroughly washed in sterilized double distilled water and cultured aseptically on two basal media *viz.*, Murashige and Skoog (MS) media (1962) and Knop's media (1865) with some modifications used for plant regeneration and rooting. The cultures were incubated under fluorescent white light and dark cycle of 16hr/8hr at 25±2°C. The sub culturing was done at every 20-25 days interval to promote shoot proliferation. Visual observations were recorded after 7 weeks of culturing for shoot regeneration and after 2 weeks for rooting.

RESULTS AND DISCUSSION

Shoot regeneration: Results of shoot regeneration from runner tip explants observed after seven weeks in all the three cultivars tested are summarised in Table 1. Maximum

Table 1. Effect of media on shoot regeneration from runner tip explants in different cultivars of strawberry (after 7 weeks of incubation)

Media	Per cent regeneration		
	Chandler	Oso Grande	Ofra
M ₅	66.6	70.0	70.0
M ₆	70.0	75.0	75.0
M ₇	75.0	77.0	80.0
M ₈	80.0	83.0	90.0
M ₉	91.0	91.7	100.0
K ₁	40.0	30.0	30.0
K ₂	60.0	40.0	40.0
K ₃	60.0	60.0	50.0
K ₄	70.0	60.0	50.0

M₅=MS + 0.4 mg l⁻¹ BAP

M₆=MS + 1.0 mg l⁻¹ BAP

M₇=MS + 2.0 mg l⁻¹ BAP

M₈=MS + 3.0 mg l⁻¹ BAP

M₉=MS + 4.0 mg l⁻¹ BAP

K₁=KNOP + 1.0 mg l⁻¹ IBA + 0.1 mg l⁻¹ BAP + 0.1 mg l⁻¹ GA₃

K₂=KNOP + 2.0 IBA + 0.2 BAP + 0.2 GA₃

K₃=KNOP + 3.0 IBA + 0.3 BAP + 0.3 GA₃

K₄=KNOP + 4.0 IBA + 0.4 BAP + 0.4 GA₃

regeneration frequency was observed on M₉ medium (100%) in cv. Ofra followed by Oso Grande (91.7 %) and Chandler (91.0 %). Minimum regeneration frequency (66.6 %) was observed in cultivar Chandler on M₅ medium (MS+0.4 mg l⁻¹ BAP). In case of media based on Knop's basic media, the maximum shoot regeneration (70 %) was recorded on K₄ medium in cv. Chandler followed by K₃ medium with 60, 60, and 50 per cent shoot regeneration in the three cvs. Chandler, Oso Grande and Ofra, respectively and minimum number of shoot regeneration was recorded on K₁ medium (Knop's +1.0 mg l⁻¹ IBA+0.1 mg l⁻¹ GA₃) in cvs. Oso Grande and Ofra.

Runner tip explants exhibited variable response for shoot formation in various media tested. Runner tip explants after 7 weeks of culture revealed maximum regeneration potential on M₉ medium (MS+4.0 mg l⁻¹ BAP). In media based on Knop's basal medium plant regeneration increased with the increased concentrations of IBA, BAP and GA₃. Media formulations based on MS or Knop's medium are most oftenly used for culturing of meristem explants. However, best results with MS based media formulations have been reported by several workers (Anderson and Hanner, 1978;

Boxus *et al.*, 1977 and Damiano, 1980)

Cultivar differences can be critical in the success of micropropagation (Mullin *et al.*, 1974 and Boxus, 1981). However, in present study on shoot regeneration, no differences were observed among the cvs. Chandler, Oso Grande and Ofra when cultured on MS based formulations whereas slight cultivar differences in shoot regeneration on the Knop's based media formulations were observed.

Shoot proliferation: Shoot proliferation from runner tip explants was observed after seven week on all media tested (Table 2). Solitary as well as multiple number of shoots were observed on MS based media. However, only solitary shoots per explant were observed on various combinations of Knop's media. In all cvs. maximum mean number of shoots per explant was observed in M₉ medium (MS+4.0 mg l⁻¹ BAP) and minimum was in M₅ medium (MS+0.4 mg l⁻¹ BAP). Among cultivars maximum mean number (13.8±3.6) and range of shoots per explant (4-36) was observed in cv. Ofra on M₉ medium.

In the present investigation, with the increase in concentration of BAP in MS based media, there was linear increase in number of

Table 2. Effect of media on shoot proliferation of regenerated plantlets from runnertip explant in different cultivars of strawberry (after 7 days of incubation)

Media	Shoots per explants					
	Chandler		Oso Grande		Ofra	
	Range	Mean	Range	Mean	Range	Mean
M ₅	1-2	1.2±0.2	1-2	1.3±0.2	1-2	1.3±0.2
M ₆	1-2	1.3±0.2	1-2	1.4±0.2	1-2	1.5±0.2
M ₇	4-12	7.1±1.2	4-16	8.9±1.6	4-16	9.4±1.2
M ₈	4-16	9.1±1.5	4-20	10.4±2.2	4-25	11.6±2.4
M ₉	4-20	10.1±1.9	4-30	12.9±3.2	4-36	13.8±3.6

Table 3. Effect of media on rooting of regenerated plantlets derived from runnertip explant in strawberry cultivars (after 2 weeks of incubation)

Media	Per cent shoots rooted	Rooting intensity	
		+	+++
R ₁	100	+	
R ₂	100	+++	
K ₁	33.3	+	
K ₂	46.7	++	
K ₃	56.7	++	
K ₄	60.0	+++	

+ = Low ; ++ = Moderate ; +++ = High

K₁=KNOP + 1.0 mg l⁻¹ IBA + 0.1 mg l⁻¹ + BAP + 0.1 mg l⁻¹ GA₃

K₂=KNOP + 2.0 IBA + 0.2 BAP + 0.2 GA₃

K₃=KNOP + 3.0 IBA + 0.3 BAP + 0.3 GA₃

K₄=KNOP + 4.0 IBA + 0.4 BAP + 0.4 GA₃

R₁=MS + 1.0 mg l⁻¹ IBA

R₂=1/2 MS + 1.0 mg l⁻¹ IBA

shoots developed per explant (Table 2). With BAP at 4 mg l⁻¹ concentration the maximum number of shoots i.e., 10.1, 12.9 and 13.8 in the cvs. Chandler, Oso Grande and Ofra, respectively was observed. It was contrary with the findings of James and Newton (1977) and Hunter *et al.* (1984). James and Newton (1977) showed that the best BAP concentration for axillary branching in strawberry ranged between 0.05 to 0.5 mg l⁻¹ whereas Hunter *et al.* (1984) reported the concentration of 0.1 mg l⁻¹ to be the optimum for multiple shoot development in strawberry. The higher requirement of BAP above 0.4 mg l⁻¹ observed in the present study may probably be due to the genotypic variation and lower levels of endogenous cytokinins in the source plant material.

Rooting : Hundred per cent rooting was observed on R₁ and R₂ media in all the

cultivars (Table 3). In case of Knop's based media maximum rooting of 60.0 per cent was observed in K₄ medium followed by K₃ (56.7 %) and K₂ (46.7 %) media. Low, and high intensity of root growth was observed on R₁ and R₂ media, respectively. The intensity of rooting in Knop's media varied from high in K₄ medium to moderate in K₂, K₃ and low in K₁ media. Hundred per cent shoot stimulated roots in R₁ and R₂ media. Whereas high percentage rooting was observed in half strength MS medium (R₂) indicating that 50 per cent reduction of major salts helps in promoting the number and length of roots thereby increasing the root intensity. Hunter *et al.* (1984) suggested that for root formation the optimum concentration being in the range of 0.75 to 1.0 mg l⁻¹.

Hundred per cent survival of plantlets

in the pots containing soil medium consisting the plantlets raised from irrespective of media of 1:1 field soil and river sand was observed in used.

REFERENCES

Anderson, W.C. and Hanner, G. (1978). Strawberry tissue culture formula Mount Vernon, W. A.: Washington State University, Northwestern Washington Research Unit.

Boxus, P. (1981). In : Coll. Sci. 15 Floralia Int, Montreal, pp. 310-348.

Boxus, P. *et al.* (1977). In : Reinert, J.; Bajaj, Y. P. S. (eds.) *Applied and Fundamental Aspect of Plant Cell, Tissue and Organ Culture*. Springer, Berlin Heidelberg, New York, pp. 130-143.

Damiano, C. (1980). Strawberry *in vitro* culture. *Annali dell' Istituto Sperimentale per la Frutticoltura*, 11: 33-42.

Hunter, S.A. *et al.* (1984). In : Conference on Plant Tissue Culture and its Agricultural Applications. Univ. Nottingham, abstract No. 61.

James, D.J. and Newton, B. (1977). *Acta Horticulturae*, 78: 321-331.

Jones, O.P. *et al.* (1988). *Plant Cell, Tissue and Organ culture*, 12: 235-241.

Knop, W. (1895). *Landwirtsh. Vers. stn.*, 70-140.

Laneri, V. and Damiano, C. (1980). *Ann. Ist Sper. Frutti*, 11: 43-48.

Liu, Z.R. and Sanford, J.C. (1988). *Hort Science*, 23: 1057-1059.

Mullin, R.H. *et al.* (1974). *Phytomorphology*, 64: 1425-1429.

Murashige, T. and Skoog, F. (1962). *Physiol. Plant*, 15: 473-497.

Popova, I.V. *et al.* (1985). In : *Probl. Vegetat. razmnozheniya V sadovod.* Mosco, pp. 112-118.

Wang, D. *et al.* (1984). *Hort Science*, 91: 71-72.