

# Effect of Replacing Fish Meal by Soybean Meal on the Performance, Nutrient Utilization and Egg Quality of Khaki Campbell Ducks in Late Laying Phase

B.K. Swain<sup>1</sup>, P.K. Naik<sup>1</sup>, S.K. Sahoo<sup>1</sup>, S.K. Mishra<sup>1</sup>, D. Kumar<sup>1</sup>, C.K. Beura<sup>1</sup>

10.18805/IJAR.B-5144

#### **ABSTRACT**

**Background:** Feed quality in terms of protein source plays an important role in achieving targeted production. The quality of fish meal available in market is of highly variable in nature. Hence, an attempt was made to see the response of laying ducks to diets where fish was replaced by soybean meal with supplementation of critical aminoacids *i.e.* lysine and methionine over and above the normal requirement.

**Methods:** A 16 week biological trial consisting of 72 Khaki Campbell laying ducks (83 weeks) subjected to three treatments ( $T_1$ -Control diet with fish meal,  $T_2$ - fish meal totally replaced by soybean meal,  $T_3$ - $T_2$  + Supplementation of Lysine and Methionine distributed equally to 9 replications of 8 laying ducks each was conducted following completely randomised design to see the effect of treatments on the performance, nutrient digestibility/retention and egg quality in Khaki Campbell laying ducks. Standard analytical and statistical procedures were followed for proper interpretation of the data.

**Result:** The egg production (nos and dozen) and DDEP percent were significantly (P<0.05) higher and FCR was significantly (P<0.05) better for ducks reared on  $T_1$  compared to other groups. The dry matter, organic matter and crude fibre digestibility was significantly (P<0.05) higher for ducks fed fish meal. However, the EE digestibility was significantly (P<0.05) higher for  $T_3$  group. The egg quality parameters were significantly higher for  $T_3$  group. It is concluded that the performance of Khaki Campbell laying ducks fed diet without fish meal was deteriorated but the egg quality was improved.

Key words: Egg production, Egg quality, Fish meal, Khaki Campbell ducks, Soybean meal.

## INTRODUCTION

India ranks second in world duck population, with a total duck population of around 33.5 millions according to the 20th livestock census of India, 2019 (BAHS,2019 and Naik et al., 2022). Duck egg and meat are relished by people next to chicken and has higher market value. Fish meal is cherished by farmers and Nutritionists in developing countries because it is composed of higher content of digestible crude protein, essential amino acids, fats, vitamins and minerals (Blair, 2008 and Chadd, 2008). The nutritive value of fish meal is comparable to soybean meal in many aspects, but its protein quality and effectiveness of some unknown growth factors vary extensively (Swain and Chakurkar, 2011). Earlier studies revealed that protein from fish meal can be completely replaced by soybean meal protein with supplementation of 0.10% methionine in broiler ration economically (Aziz et al., 2001). Fish meal can be replaced by soybean meal as a main protein source along with supplementation of synthetic amino acids in the diet for ducklings and broilers (Yuan, 1989 and Okan and Ogun, 1988). Fish meal is an exceptional protein source for poultry feeding as it has ample quantity of all essential amino acids particularly lysine and methionine required by poultry (Scott et al., 1982). It is a excellent source of mysterious factors (Bondi, 1987). However, inadequate accessibility in recent years, want for consistency and elevated market price compared to vegetable protein sources has restricted its

<sup>1</sup>ICAR-Directorate of Poultry Research Regional Station, Bhubaneswar-751 003, Odisha, India.

Corresponding Author: B.K. Swain, ICAR-Directorate of Poultry Research Regional Station, Bhubaneswar-751 003, Odisha, India. Email: nbkswain@gmail.com

How to cite this article: Swain, B.K., Naik, P.K., Sahoo, S.K., Mishra, S.K., Kumar, D. and Beura, C.K. (2023). Effect of Replacing Fish Meal by Soybean Meal on the Performance, Nutrient Utilization and Egg Quality of Khaki Campbell Ducks in Late Laying Phase. Indian Journal of Animal Research. DOI: 10.18805/IJAR.B-5144.

inclusion in broiler diets (Blair, 2008 and Chadd, 2008). Soybean meal has high protein and essential amino acid contents to meet the nutrient requirement of poultry (Yasothai, 2016). Therefore, the present study was conducted to evaluate the effect of replacing fish meal by soybean meal along with supplementation of additional lysine and methionine in the diet on the performance, nutrient utilization and egg quality of Khaki Campbell laying ducks in late laying phase.

### **MATERIALS AND METHODS**

The experiment was carried out at ICAR-Directorate of Poultry Research Regional Station, Bhubaneswar during

Volume Issue

April to July 2022. A control diet with fish meal and two experimental diets (Table 1) were formulated by replacing fish meal with soybean meal and supplementation of additional lysine and methionine i.e. T, (Fish meal 7%), T, (Fish meal-0%) and T<sub>3</sub> (Fish meal 0% + Lysine + Methionine). All the diets were made isonitrogenous and isocaloric. Seventy two Khaki Campbell laying ducks (83 weeks) were divided into three groups (each group had three replicates with 8 laying ducks per replicate) and were randomly fed above three diets for an experimental period of 16 weeks. All the birds were reared on deep litter system following standard management practices. The weekly feed intake, daily egg production and weekly egg weight were recorded and FCR was calculated as amount of feed consumed in kg to produce one dozen egg. The external egg quality parameters i.e. egg weight, length, width and shape index as per formula of Shultz (1953) were recorded. The internal egg quality parameters i.e. height of the albumen and yolk, length and width of the albumen and yolk were recorded and albumen index, yolk index and haugh unit were calculated as per the formula of Heiman and Carver (1936), Sharp and Powell (1930) and Haugh (1937), respectively. The feed cost to produce dozen egg was calculated. The proximate composition of fish meal, soybean meal and standard layer diet was analyzed (AOAC, 2005, Table 2). At the end of the biological trial, a metabolic trial was conducted with 4 days collection period by keeping the laying ducks in individual metabolic cages. A known quantity of feed was offered daily and excreta voided over 24 hr period was collected quantitatively. The aliquots of excreta were collected daily after mixing it well for dry matter and nitrogen estimation. For dry matter estimation the excreta samples were kept in hot air oven at 70°C for 72 hr (Sahoo *et al.*, 2014). For faecal nitrogen estimation samples were preserved in 25% sulphuric acid in duplicate (Pathak and Kamra, 1999). The samples of feeds, residues and faeces were analyzed for proximate composition (AOAC, 2005). The metabolizability of the nutrients was calculated as the difference between nutrient intake and nutrient voided.

The data on various parameters were analysed (Snedecor and Cochran, 1989). The significant differences between the means were tested by Duncan's multiple range test (Duncan, 1955).

### **RESULTS AND DISCUSSION**

The egg production, duck day egg production percent, egg weight and feed intake were significantly (P<0.05) higher in ducks fed diet with inclusion of fish meal (Table 3). The feed conversion ratio and cost of feed/dozen egg were significantly (P<0.05) better in laying ducks fed fish meal diet. Similar to present findings, Mundhem and Opstvedt (1981) observed that inclusion of fish meal in the diet of layers significantly increased the egg production with improvement in the efficiency of feed utilisation compared to soybean meal. In an earlier study, significantly higher (P<0.05) egg production and better feed conversion ratio were reported in laying hens fed 3% fish meal compared to control group fed only soybean meal (Rowghani et al., 2007).

Table 1: Composition of experimental diets.

| La ana di anta          | T,                            | T <sub>2</sub>      | T <sub>3</sub> (Without FM and supplementation |  |
|-------------------------|-------------------------------|---------------------|------------------------------------------------|--|
| Ingredients             | (Control diet with fish meal) | (Without fish meal) | of lysine and meth.)                           |  |
| Wheat                   | 60                            | 60                  | 60                                             |  |
| Soybean meal            | 16                            | 24.5                | 24.5                                           |  |
| Fish meal               | 07                            | -                   | -                                              |  |
| DORB                    | 07                            | 03                  | 03                                             |  |
| Shell Grit              | 08                            | 10                  | 10                                             |  |
| DCP                     | 01                            | 1.5                 | 1.5                                            |  |
| Calcite                 | 01                            | 01                  | 01                                             |  |
| Trace Min. Mix.         | 100 g                         | 100 g               | 100 g                                          |  |
| Lysine                  | Nil                           | Nil                 | 250 g                                          |  |
| DL-Meth.                | Nil                           | Nil                 | 240 g                                          |  |
| AB2D3K                  | 15 g                          | 15 g                | 15 g                                           |  |
| B-Complex               | 15 g                          | 15 g                | 15 g                                           |  |
| Toxin binder            | 100 g                         | 100 g               | 100 g                                          |  |
| Choline chloride        | 100 g                         | 100 g               | 100 g                                          |  |
| VitE Se                 | 15 g                          | 15 g                | 15 g                                           |  |
| Chemical composition (% | ∕₀, Calculated)               |                     |                                                |  |
| CP, analysed            | 18.28                         | 18.04               | 18.04                                          |  |
| ME (Kcal/Kg)            | 2670                          | 2650                | 2650                                           |  |
| Lysine                  | 0.75                          | 0.75                | 1.12                                           |  |
| Methionine              | 0.30                          | 0.30                | 0.45                                           |  |
| Ca                      | 4.0                           | 4.0                 | 4.0                                            |  |
| AvailP                  | 0.5                           | 0.5                 | 0.5                                            |  |

2 Indian Journal of Animal Research

In contrast, Yuan (1989) reported that fish meal can be replaced by soybean meal supplemented with synthetic amino acids for ducklings. There was significant decrease in egg production (Nos), duck day egg production % and poor FCR and cost of egg production per dozen eggs (Table 1) due to replacement of fish meal by soybean meal along with additional lysine and methionine. This may be due to the high quality protein in fish meal compared to plant protein source like soybean meal (Fanatico et al (2018); highly available form of calcium and phosphorous in fish meal (Mile and Jacob, 2011); fish meal is an excellent source of all essential amino acids particularly lysine and methionine (Scott et al., 1982); it is also a good source of unidentified factors (Bondi, 1987). Earlier researchers also observed that the egg production, fertility and hatchability have improved due to inclusion of fish meal in the diet of laying hens (Almayehu et al., 2015). The above extraordinary nutritional qualities in fish meal might have increased the egg production significantly with a great margin in ducks fed fish meal compared to those fed soybean meal with or without additional lysine and methionine. In contrast, Thongwittaya and Tasaki (1996) observed normal egg production in laying ducks fed on a diet based on soybean meal (21%) with no fish meal, however, supplementation with methionine and lysine increased the egg production. Results of an earlier study demonstrated that replacement of fish meal with either different vegetable proteins or synthetic amino acids gave better results in efficiency of production and cost of production (Rama Rao et al., 1998). The digestibility/ retention of dry matter (DM), organic matter (OM), crude protein (CP) and crude fibre (CF) were higher in ducks fed diet with fish meal compared to those fed diet without fish meal and with amino acid supplementation (Table 4). Higher DM metabolizability was reported in white pekin ducks (Naik et al., 2021) and in Khaki Campbell ducks (Joshi et al., 2015). However, lower DM digestibility was reported in White Pekin and Khaki Campbell ducks, respectively (Sahoo et al., 2014). The OM digestibility was higher than the values reported by Sahoo et al. (2014) and similar to Joshi et al. (2015). The metabolizability of CP values were higher than the values reported by Naik et al. (2021) and Sahoo et al. (2014). The metabolizability of EE in present study was significantly higher in T<sub>2</sub> group (without fish meal) and higher than the values reported by earlier workers (Joshi et al., 2015). The CF metabolizability values were higher than the values (41.57 to 51.23 and 59.57 to 62.05) reported by earlier workers (Sahoo et al., 2014 and Naik et al., 2021). The nitrogen balance (2.69 to 2.98) and nitrogen balance as % of N intake (75.93 to 78.75) were higher in groups fed fish meal compared to other treatment groups. Similar values of nitrogen balance (2.35 to 4.22) and lower nitrogen balance as % of N intake (67.40 to 70.09) were reported by earlier researchers (Naik et al., 2021). The difference in the values of nutrient metabolizability among the findings of various studies might be due to the difference in the feeding regimes. The egg weight was similar for all the treatment groups. However, higher (P<0.05) egg weight was reported in laying hens fed 3% fish meal compared to those fed only soybean

Table 2: Chemical composition of fish meal, soybean meal and experimental diets.

| Analysed, %   | T <sub>1</sub> (Control diet with fish meal) | T <sub>2</sub> (Without fish meal) | T <sub>3</sub> (Without FM and supplementation of lysine and meth.) | Fish meal | Soybean meal |
|---------------|----------------------------------------------|------------------------------------|---------------------------------------------------------------------|-----------|--------------|
| Crude protein | 18.28                                        | 18.04                              | 18.04                                                               | 49.40     | 46.45        |
| Ether extract | 3.13                                         | 3.17                               | 3.14                                                                | 4.78      | 1.65         |
| Crude fibre   | 4.45                                         | 4.36                               | 4.32                                                                | 3.52      | 6.88         |
| Total ash     | 10.47                                        | 9.22                               | 9.10                                                                | 20.45     | 9.39         |
| NFE           | 63.19                                        | 65.18                              | 65.32                                                               | 21.85     | 35.63        |
| Calculated, % |                                              |                                    |                                                                     |           |              |
| ME (Kcal/kg)  | 2670                                         | 2650                               | 2650                                                                |           |              |
| Lysine        | 0.75                                         | 0.75                               | 1.12                                                                |           |              |
| DL-meth       | 0.30                                         | 0.30                               | 0.45                                                                |           |              |

Table 3: Effect of replacing fish meal by soybean meal on the performance of Khaki campbell ducks in late laying phase.

| Treatments/Attributes             | T <sub>1</sub> | T <sub>2</sub>      | T <sub>3</sub>     | SEM   |
|-----------------------------------|----------------|---------------------|--------------------|-------|
| Egg production (nos)              | 74.80ª         | 57.23 <sup>b</sup>  | 49.60°             | 3.741 |
| Duck day egg production (DDEP), % | 61.81ª         | 47.28 <sup>b</sup>  | 40.98°             | 3.093 |
| Egg production (dozen)            | 6.23ª          | 4.77 <sup>b</sup>   | 4.14°              | 0.311 |
| Feed intake (kg)*                 | 17.52          | 17.53               | 17.46              | 0.022 |
| FCR                               | 2.815°         | 3.647 <sup>b</sup>  | 4.159 <sup>a</sup> | 0.205 |
| Cost of feed/dozen egg (Rs)       | 95.75°         | 132.40 <sup>b</sup> | 158.62a            | 9.461 |
|                                   |                |                     |                    |       |

Means bearing different superscripts within a row differ significantly (P<0.05).

Volume Issue

<sup>\*</sup>Non-significant.

**Table 4:** Effect of replacement of fish meal by soybean meal on metabolizability of various nutrients and nitrogen balance in khaki campbell laying ducks.

| Parameters                        | Dietary groups     |                    |                    |      |
|-----------------------------------|--------------------|--------------------|--------------------|------|
| raidileteis                       | T <sub>1</sub>     | T <sub>2</sub>     | T <sub>3</sub>     | SEM  |
| Metabolizability (%) of nutrients |                    |                    |                    |      |
| Dry matter                        | 79.37ª             | 78.61 <sup>b</sup> | 78.02 <sup>b</sup> | 0.18 |
| Organic matter                    | 82.03a             | 81.28 <sup>b</sup> | 80.91 <sup>b</sup> | 0.16 |
| Crude protein                     | 78.75 <sup>a</sup> | 76.79 <sup>b</sup> | 75.93 <sup>b</sup> | 0.34 |
| Ether extract                     | 73.27 <sup>b</sup> | 73.96ª             | 72.64 <sup>b</sup> | 0.18 |
| Crude fibre                       | 68.47 <sup>a</sup> | 67.05 <sup>b</sup> | 66.57°             | 0.21 |
| Nitrogen balance                  |                    |                    |                    |      |
| N intake (g/d)                    | 3.79ª              | 3.79ª              | 3.67 <sup>b</sup>  | 0.02 |
| Nitrogen outgo (g/d)              | 0.81ª              | 0.80a              | 0.77 <sup>b</sup>  | 0.01 |
| N Balance (g/d)                   | 2.98ª              | 2.88 <sup>b</sup>  | 2.69°              | 0.03 |
| N balance as % of N intake        | 78.75ª             | 76.79 <sup>b</sup> | 75.93 <sup>b</sup> | 0.34 |

<sup>&</sup>lt;sup>a,b</sup> Means with different superscripts in a row differ significantly (P<0.05).

Table 5: Effect of replacement of fish meal by soybean meal on the egg quality characteristics.

| Treatments/attributes            | T <sub>1</sub>     | $T_2$              | T <sub>3</sub> | SEM   |
|----------------------------------|--------------------|--------------------|----------------|-------|
| Egg weight (g)*                  | 75.92              | 75.98              | 74.97          | 0.732 |
| Shape index                      | 65.77 <sup>b</sup> | 65.76 <sup>b</sup> | 69.05ª         | 0.514 |
| Albumen index                    | 0.136 <sup>b</sup> | 0.159ª             | 0.155ª         | 0.003 |
| Yolk index                       | 0.506 <sup>b</sup> | 0.512ab            | 0.518ª         | 0.002 |
| Haugh unit                       | 92.51 <sup>b</sup> | 97.43ª             | 97.24ª         | 0.585 |
| Shell thickness with membrane    | 0.556ab            | 0.536 <sup>b</sup> | 0.561ª         | 0.005 |
| Shell thickness without membrane | 0.472ab            | 0.458 <sup>b</sup> | 0.482a         | 0.004 |
| Albumen,%                        | 53.13 <sup>b</sup> | 55.93ª             | 55.57ª         | 0.450 |
| Yolk, %*                         | 30.84              | 31.70              | 31.00          | 0.461 |
| Shell,%*                         | 9.54               | 9.41               | 9.38           | 0.076 |

<sup>&</sup>lt;sup>a,b</sup> Means with different superscripts in a row differ significantly (P<0.05).

meal as a protein source (Rowghani et al., 2007). On the other hand, significant (P<0.05) increase in egg weight was reported in egg laying ducks and Hy-Line laying hens as dietary lysine level was increased (Fouad et al., 2018 and Proschaska et al., 1996). The egg quality parameters i.e. shape index, albumen index, yolk index, haugh units, shell thickness with and without membranes and albumen % were significantly (P<0.05) better in laying ducks fed diets with SBM (without fish meal diet) and diet 3 with addition of lysine and methionine (Table 5). Earlier researchers reported that albumen quality increased with increased dietary lysine concentration (Balnave et al., 2000). Since, better albumen quality implies better albumen height which is a indication of better albumen index and haugh unit . This may be the reason of better egg quality i.e. albumen index and haugh unit in ducks fed diet with soybean meal replacing fish meal with or without additional lysine and methionine.

However, earlier workers reported that dietary supplementation of lysine had no effects on egg shape index and haugh unit (Fouad et al., 2018). In contrast, no improvement in haugh unit in Hy-Line Brown laying hens

and Hy-Line W-36 laying hens was reported due to dietary supplementation of lysine (da Rocha *et al.*, 2009 and Souza *et al.*, 2014). The value of haugh unit ranged from 92.51-97.24 in present study. In contrast, lower value (87.80 -90.45) was reported in Khaki Campbell laying ducks in earlier study (Swain *et al.*, 2020).

## **CONCLUSION**

It may be concluded that replacement of fish meal by soybean meal reduced the performance of Khaki Campbell laying ducks in the late phase of laying in terms of lower egg production and egg weight and poor FCR. However, the egg quality was improved due to replacement of fish meal by soybean meal and with additional lysine and methionine.

## **ACKNOWLEDGEMENT**

The authors are thankful to Indian Council of Agricultural Research (ICAR), New Delhi, for providing financial support to conduct this study.

Conflict of interest: None.

<sup>\*</sup>Non-significant.

#### **REFERENCES**

- Alemayehu, Y., Urge, M. and Getu, A. (2015). Effects of levels of inclusion of locally processed fish waste meal in the diets of white leghorn layers on performance parameters, hatchability, economics, egg production and egg quality. Iranian Journal of Applied Animal Science. 5: 689-698.
- AOAC. (2005). Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists, Washington, DC.
- Aziz, M.A., Khandakar, Z.H. and Islam, M.M. (2001). Effect of replacing protein from fish meal with soybean meal on the performance of broiler chicken. Indian Journal of Animal Nutrition. 18:23-28.
- BAHS. (2019). Basic Animal Husbandry Statistics, Govt. of India, Ministry of Fisheries, Animal Husbandry and Dairying, Krishi Bhawan, New Delhi.
- Balnave, D., Gill, R.J., Li, X. and Bryden, W.L. (2000). Responses of IsaBrown laying hens to a pre-layer diet containing additional calcium and to dietary protein and lysine concentrations during lay. Australian Journal of Agricultural Research. 51: 779-784.
- Blair, R. (2008). Nutrition and Feeding of Organic Poultry. 2<sup>nd</sup> edn. Cabi Series, CABI, Wellingford, UK.
- Bondi, A.A. (1987). Animal Nutrition. John Wiley and Sons, New York.
- Chadd, S. (2008). Future trends and developments in poultry nutrition in: FAO. Poultry in the 21<sup>st</sup> Century:avian influenza and beyond. Proceedings of International Poultry Conference held on 5-7 November 2007, Bangkok, Thailand, FAO Animal and Health Proceeding No. 9. Rome.
- da Rocha, T.C., Gomes, P.C., Donzele, J.L., de Toledo Barreto, S.L. de Carvalho Mello, H.H. and Brumano, G. (2009). Digestible lysine levels in feed for 24-40- week old layinh hens. Revista Brasileria de Zootecnia. 38: 1726-1731.
- Duncan, D.B. (1955). Multiple range and multiple F test. Biometrics. 11: 1-42.
- Fanatico, A., Arsi, K., Upadhyaya, I. And Morales Ramos, J.A. (2018).

  Sustainable fish ans invertebrate meals for methionine and protein feeds in organic poultry production. Journal of Applied Poultry Research. 0:1-12.http://dx.doi.org/10.33
- Fouad, A.M, Chen, W., Ruan, D., Wang, S., Xia, W and Zheng, C. (2018). Effects of dietary lysine supplementation on performance,egg quality and development of reproductive system in egg laying ducks. Journal of Applied Animal Research. 46: 386-391.
- Haugh, R.R. (1937). The Haugh unit for measuring egg quality. U.S. Egg and Poultry Magazine 43: 552-555 and 572-573.
- Heiman, V. and Carver, J.S. (1936). The albumen index as a physical measurement of observed egg quality. Poultry Science. 15: 141-148.
- Joshi, S.K., Sahoo, S.K., Babu, L.K., Giri, S.C. and Mondal, D. (2015). Effect of feeding different levels of proteins on the performance in Khaki Campbell during starter stage. Indian Journal of Animal Research. 49: 70-76.
- Miles, R.D. and Jacob, J.P. (2011). Fish meal: Understanding Why This Feed Ingredient is so Valuable in Poultry Diets. University of Florida Cooperative and Extension Service. Accessed Aug. 2023. http://ufdcimages.uflib.ufl.edu/IR/ 00/00/42/60/00001/PS00700.pdf.

- Mundheim, H. and Opstvedt, J. (1981). The value of herring type fish meal and soybean meal as protein supplements to poultry diets based on different types of cereals 1. Comparison of fish meal and soybean meal in maize based and barley wheat based layer diets. Acta Agriculturae Scandinavica. 31: 287-298.
- Naik, P.K., Swain, B.K. and Beura, C.K. (2022). Duck production in India-A Review. Indian Journal of Animal Sciences. 92: 917-926.
- Naik, P.K., Swain, B.K., Sahoo, S.K., Kumar, D. and Mishra, S.K. (2021). Effect of feeding graded levels of broken rice on nutrient metabolizability in White Pekin duckd during second year of laying. Animal Nutrition and Feed Technology. 21: 199-203.
- Okan, F. and Ogun, S. (1988). The determination of the biological value of the soybean meal and the investigation on the possibility of using it instead of the fish meal for broiler starter feed mixture. Nutrition Abstract Review Series B. 58: 51.
- Pathak, N.N. and Karma, D.N. (1999). Method of Conducting Digestion/metabolic Trial on Experimental Animals. In: Lab Manual Anim Nutr [V.R.B. Sastry, D.N. Kamra and N.N. Pathak (eds)]. Indian Veterinary Research Institute, Izatnagar, India. Pp. 131-136.
- Proschaska, J.F., Carey, J.B. and Shafer, D.J. (1996). The effect of L-lysine intake on egg component yield and composition in laying hens. Poultry Science. 75: 1268-1277.
- Rama Rao, S.V., Praharaj, N.K., Mohapatra, S.C., Raju, M.V.L.N., Chawak, M.M. and Mishra, S.K. (1998). Substitution of fish meal with different plant protein supplements and synthetic amino acids in layer diet. Indian Journal of Poultry Science. 33: 26-30.
- Rowghani, E., Boostani, A.D., Mahmoodian Fard, H.R. and Frouzani, R. (2007). Effect of dietary fish meal on production performance and cholesterol content of laying hens. Pakistan Journal of Biological Science. 10: 1747-1750.
- Sahoo, S.K., Naskar, S.K., Giri, S.C., Padhi, M.K. and Panda, S.K. (2014). Performance of white pekin ducks on replacement of maize with cassava tuber meals. Animal Nutrition and Feed Technology. 14: 291-300.
- Scott, M.L., Nesheim, M.C. and Young, R.J. (1982). Nutrition of the Chicken. M.L. Scott and Associates, Ithaca, NY.
- Sharp, P.F. and Powell, C.K. (1930). Decrease in internal quality of hens egg during storage as indicated by the yolk. Indian Journal of Chemistry. 22: 909-910.
- Shultz, P.T. (1953). Analysis of egg shape in chickens. Biometrics. 9: 336.
- Snedecor, G.W. and Cochran, W.G. (1989). Statistical Methods.

  Oxford and IBH Publishing Company, New Delhi.
- Souza, H.R.B., Fari, D.E., Caetani, V.C., Santos, A.L., Araujo, R.B. and Sakamoto, M.L. (2014). Digestible lysine levels for brown layers. Acta Scientia Animal Science. 36: 369-372.
- Swain, B.K. and Chakurkar, E.B. (2011). Replacement of Soybean meal by Fish meal in growing Vanaraja Chickens. Indian Veterinary Journal. 88: 44-45.
- Swain, B.K., Naik, P.K., Sahoo, S.K., Mishra, S.K. and Kumar, D. (2020). Effect of feeding *Azolla pinnata* on the performance of Khaki Campbell layers. Indian Journal of Poultry Science. 55: 221-224.

Volume Issue 5

- Thongwittaya, N. and Tasaki, I. (1996). Energy and protein requirement of Khaki Campbell X Thai native laying ducks. Asian-Australasian Journal of Animal Science. 5: 365-368.
- Yasothai, R. (2016). Antinutritional factors in soybean meal and its deactivation. International Journal of Science Environment and Technology. 5: 3793-3797.
- Yuan, G.D. (1989). Performance of table ducklings fed with diets on plant-protein alone. Chinese Journal of Animal Science. 25: 3-5

6 Indian Journal of Animal Research