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ABSTRACT

The presence of complex microorganisms in the rumen of ruminants are able to process the lignocellulose from low quality feed and
fodder into volatile fatty acids, convert non-protein nitrogen into microbial protein and synthesize B vitamins, thus, ruminants are able
to produce food of animal origin without competition for feed with non-ruminants and man. On the other hand, they contribute 14
per cent of anthropogenic methane, released annually into the atmosphere. Manipulating the rumen microbiome is considered as an
important approach to reduce environmental impact, while increasing production efficiency in ruminants. A systematic literature search
was undertaken and relevant research and review articles were downloaded, classified and salient points extracted to prepare the
narrative review on “Influence of Feed and Feeding strategies on Rumen microbiome”. The microbial community in the rumen is the
most diverse composed of bacteria, archaea, protozoa, fungi and uncharacterized virome. Differences in ruminal microbial community
compositions are predominantly attributable to diet. Dietary manipulation offers a viable solution to alter the rumen microbiome so that

the present-day challenges faced by the ruminant livestock industry is addressed.

Key words: Feed effect, Feed efficiency, Methane mitigation, Rumen microbes.

The organization for economic cooperation and
development (OECD) - FAO, Agricultural Outlook 2023-
2032, forecasts a continued growth in the demand and
production of meat and dairy in the decade ahead (FAO,
2023) World milk production is projected to grow at 1.6 %
per annum, faster than most other main agricultural
commodities, the per capita consumption of fresh dairy
products is also projected to increase by 1.0% per annum
over the coming decade, faster than over the past ten
years, driven by higher per-capita income growth (FAO,
2019). Global demand for meat is also growing and over
the past 50 years, meat production has more than tripled,
the world now produces more than 340 million tonnes of
meat per year. Ruminants contribute substantially to the
production of milk, meat, provide products such as skins,
bones, dung, heating material and are draft animals
(Flachowsky et al., 2013). The presence of complex
microorganisms in the rumen of ruminants (Hungate,
1966) are able to process the lignocellulose from low
quality feed and fodder into volatile fatty acids, convert
non-protein nitrogen into microbial protein and synthesize
B vitamins, thus are able to produce food of animal origin
without competition for feed with non-ruminants and man
(Flachowsky et al., 2017). However, ruminant livestock
production is responsible for approximately 14% of
anthropogenic methane, released annually into the
atmosphere (Gerber et al., 2013) which, is not only a major
problem to the environment, but also causes a loss of 2
to 8% of the feed energy as methane (IPCC, 2006).
Improvements in the production efficiency of ruminants
between the period 2000 to 2018 has led to decline in
methane intensity of meat and milk from ruminants in
most regions of the world, despite this decrease in
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methane intensity, total methane emitted globally by
ruminants increased during the same period (Chang et al.,
2021). Hence, avenues are being sought to decrease the
emissions of greenhouse gases from ruminants while
simultaneously increasing production to meet the rising
demand for animal products (Ungerfeld et al., 2022).
Improvement of rumen efficiency can be achieved by
manipulating animal diet, improving host microbial
interactions and plant microbial interactions to maximise
productivity whilst reducing environmental costs (Huws
et al., 2018). Microbiota manipulation has been attempted
to improve energy harvesting, reduce methane emission,
to prevent and treat ruminal diseases (Malmuthuge and
Guan, 2017; McCann et al., 2016). It is in this context that
this narrative review was conceptualized and written.
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Rumen microbiome

The microbial community in the rumen is the most diverse
gut ecosystems of the animal kingdom (Weimer, 2015). It is
composed of bacteria (10%° to 10* organisms/ml) archaea
(108 to 10° organisms/ml), protozoa (10°to 10° organisms/mi),
fungi (10° to 10* organisms/ml) and uncharacterized
virome (Newbold and Ramos, 2020). The Hungate 1000
project, has produced 501 genomes (480 bacteria and 21
archaea) from rumen microbes (Seshadri et al., 2018).
Members of the genera Fibrobacter and Ruminococcus are
predominant fiber-digesting bacteria in the rumen, specifically
the species Fibrobacter succinogenes, Ruminococcus
flavefaciens and Ruminococcus albus (Koike and Kobayashi,
2001). Ruminants harbour distinct protozoal populations from
birth, the most common protozoa in the rumen are ciliates,
with a few flagellate species (Williams and Coleman,
1992). Predominant protozoal genera in the rumen are
Entodinium, Epidinium, Metadinium, Diploplastron,
Polyplastron and Diplodinium (Lima et al., 2015). Anaerobic
fungi represent 10 to 20% of the rumen microbiome and
they are thought to be crucial fibre degraders (Krause etal., 2013).
There are 5 major fungal phyla, which include 55 fungal
genera, the predominant genera are Ascomycota (27%),
Basidiomycota (3%) and Neocallimastigomycota (1%)
(Kumar et al., 2015). However, Belanche et al. (2019)
reported that the majority of the fungal species were
anaerobic and belonged to Neocallimastigomycota. The
most abundant archaeal phylum in the rumen was
Euryarchaeota (99%), ten archaeal genera were detected
in the rumen and the most abundant genus was
Methanobrevibacter (91%) (Zhou et al., 2017). Ruminal
methanogens have been broadly clustered into 3 distinct
genera Methanobrevibacter, Methanosphaera and Metha
nomassiliicoccales in dairy cows (Zhu et al., 2017; Pitta
et al., 2021).

Effect of feed type on rumen microbiome

A global comparison study of the rumen microbiome
concluded that, a common core of bacteria and archaea
dominated in nearly all samples, differences in microbial
community compositions were predominantly attributable to
diet (Henderson et al., 2015). Calves fed with milk and
concentrate are reported to have a higher relative
abundance of methanogens and bacteria known to degrade
readily fermentable carbohydrates than milk only fed calves
(Dias et al., 2017). Firmicutes and Bacteroidota were the
two major bacterial phyla detected in preweaning calves (Li
et al., 2019; Dias et al., 2018), Firmicutes was dominant in
high-grain diets, while Bacteroidota was dominant in hay
diets (Faniyi et al., 2019). Calf starter fed to calves from the
seventh day onward led to the emergence of Prevotella as
the predominant rumen bacterium by fourteenth day,
Megasphaera species increased between 7 and 14 days
and Butyrivibrio, Succinivibrio, Catenibacterium increased
after 14" day with decline in Streptococcus and Lactobacillus.
Archaeal species increased by 28" day (O'Hara et al., 2020).

Calves fed milk replacer at 0.749 kg/d had a higher
proportion of ruminal fibrolytic bacteria (B. fibrisolvens
and Clostridium cluster IV) than calves fed 1.498 kg of milk
replacer/d for 5 weeks (Hao et al., 2021).

High forage diets, in comparison to high-concentrate
diets, promoted higher bacterial diversity and abundance
of Bacteroides, Fibrobacter and Ruminococcus (Wang etal.,
2019a). On feeding hay, higher relative abundances of
Prevotella, Eubacterium, Oscillibacter and Succiniclasticum
and lower relative abundances of Ruminococcus,
Clostridium and Olsenella were identified compared with the
feeding of high concentrate (Kim et al., 2018). High
concentrate diets negatively affected protozoal growth
(Hristov et al., 2001). Large increases in grain feeding
increased the abundances of Selenomonas ruminantium,
Streptococcus bovis and Prevotella bryantii while decreasing
the abundances of Butyrivibrio fibrisolvens and Fibrobacter
succinogenes in rumen digesta (Fernando et al., 2010).
During subacute rumen acidosis induced by high grain
diet or sudden change from high forages to a grain based
diet, a decline in the population of Bacteroidetes occurred
(Cardo, 2015). The relative abundances of the phyla
Bacteroidetes, Fibrobacteres, Verruomicrobia and
Proteobacteria were higher in low SARA risk lambs,
Firmicutes, Tenericutes and Actinobacteria were higher in
the high SARA risk lambs (Li et al., 2017). High concentrate
diet in goats can induce ruminal microbiota dysbiosis,
phylum-wide shift in the Cyanobacteria and Verrucomicrobia
(Hua et al., 2017). Rumen bacterial composition of goats
fed with high grain diet had relative abundance of
Actinobacteria and lower relative abundance of Tenericutes,
Verrucomicrobia, Proteobacteria and Fibrobacteres, no
significant differences were observed in relative abundance
of Bacteroidetes and Firmicutes between hay and high grain
fed goats (Zhang et al., 2018). High proportions of rapidly
fermented carbohydrates and low ruminal pH resulted in
rapid proliferation of Streptoccosus bovis and Lactobacillus
sp. (McCann et al., 2016). Dairy goats fed high levels of
rumen degradable starch, promoted lower levels of genes
encoding for enzymes involved in cellulose degradation
and starch branching which were mostly present in
Prevotellaceae, Ruminococcaceae and Bacteroidaceae
(Shen et al., 2020). High concentrate diets increased the
relative abundance of Eubacterium spp., Clostridium
spp., Ruminococcus spp., Lactobacillus, Bifidobacterium
spp. and decreased the relative abundance of
Prevotella spp., Fibrobacter succinogenes and Bacteroides
spp (Zhang et al., 2020a).

In Sunit sheep that were only grazed or adopted to
barn feeding with grazing the concentrations of propionic
acid were negatively correlated to the abundance
of Bacteroides and positively correlated to Ruminococcus
(Wang et al., 2018). Belanche et al. (2019) reported that
the adaptation process from non-grazing to grazing diet
led to an increase in the microbial concentration, diversity,
microbial network complexity and resulted in the abundance
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of key microbes Ruminococcus, Butyrivibrio, Orpinomyces,
Prevotella, Entodiniinae, Streptococcus, Selenomonas and
Methanomassiliicoccaceae.

Feed energy and protein levels on rumen
microbiome

There was an increase in the number of Bacteroidetes
within the rumen in buffalo fed high levels of hay, which
decreased the dietary energy concentration (Pitta et al.,
2014a). Relative abundance of Firmicutes, Lachnospiraceae,
Veillonellaceae, Saccharofermentants Erysipelotrichaceae
and Butyrivibrio were reported in high feed intake, Mao et al.
(2012) indicated that the abundance of Prevotella was
highly correlated with the content of crude protein.
Protozoa and fungi count remained unchanged with
increasing levels of crude protein, but archaea counts
increased (Chanthakhoun et al., 2012). Increasing crude
protein raised proteolytic bacteria abundance (Butyrivibrio
fibrisolvens and Prevotella ruminicola) in crossbred beef
steers fed total mixed ration (Wang et al., 2017). A diet
with 5.3% ruminally degradable protein resulted in a higher
bacterial nitrogen flow 415 g/d as opposed to 365 g/d
when 4.8% ruminally degradable protein was fed (Volden
et al.,, 1999). Reducing 30% lysine via rumen protected
lysine significantly decreased relative abundance of
Firmicutes (Kong et al., 2020). Low energy diet increased
the relative abundance of phyla of Fibrobacteres whereas,
at the genus level, it increased the relative abundance
of Butyrivibrio and Prevotellaceae (Li et al., 2020).
Srinivasan et al. (2023) reported that Methanogen
belonging to the order Methanomassiliico ccales was not
present in the rumen liquor of Pulikulam cattle fed high
energy diet.

Feed processing on rumen microbiome

Pelleting high grain TMR altered the rumen fermentation
and amplified the ruminal microbiome, Fibrobacteres was
significantly decreased in the high grain TMR pelleted
group, pelleting resulted in a decrease in the percentage
of unclassified BS11 gut group and Succiniclasticum,
while it led to an increase in the abundance of simple
sugar fermenters like Megasphaera, Olsenella, Dialister
and Sharpea (Trabi et al.,, 2019). Chopping roughage
increased ruminal bacteria Papillibacter and Eubacterium
hallii which are involved in butyrate production and also
increased Synergistetes and Mogibacterium, which are
involved in bacterial colonization (Wang et al., 2020). In
yearling sheep, feeding pelleted hay led to increase in
bacterial richness and was positively associated with
several Succiniclasticum, Prevotella and uncultured taxa
in the Ruminococcaceae and Rickenellaceae families
and Bacteroidales order (Ishaq et al., 2019b). The relative
abundance of Prevotella was significantly increased while
the relative abundance of Succinivibrionaceae was
decreased in cattle fed whole-plant corn silage compared
with those fed corn straw silage (Cui et al., 2022).

Fat or fatty acid supplementation on rumen microbes

Vegetable oil supplementation reduced rumen protozoan
population in ruminants and also resulted in a negative
effect on cellulolytic bacteria causing inhibitory effects of
the fibre digestion (Ilbrahim et al., 2021). Ruminal
microorganisms belonging to the genera Fibrobacter,
Ruminocuccus, Butyrivibrio and Prevotella can be very
sensitive to fat (Huws et al., 2014). Soybean oil and linseed
oil supplementation potentially decreased the populations
of Butyrivibrio fibrisolvens, Ruminococcus albus and F.
succinogenes and decreased total volatile fatty acid
production in the rumen (Yang et al., 2009). Studies have
shown that linseed and linseed oil affect the bacteria
communities in the rumen, especially the cellulolytic group
(Enjalbert et al., 2017).

Dietary PUFA can influence the composition of the
rumen microbiota (Fievez et al., 2007). Qil rich supplement
containing C18:2n-6 and C18:3n-3 inhibited the growth of
fibrolytic fungi, Fibrobacter succinogenes and
Ruminococcus flavefaciens in the rumen and suppressed
the methanogenesis (Zhang et al., 2008). Hristov et al.
(2013) reported that both C18:2n-6 and C18:3n-3 were
effective to decrease rumen ciliate. Coconut oil, which has
a high MCFA content, is more toxic to protozoa and fibrolytic
bacteria, moreover, it selectively inhibits certain ruminal
archaea populations (Patra and Yu, 2014). Supplementation
of MCFA at 0.063 per cent dietary DM may not affect overall
animal performance or total tract nutrient digestibility but
decrease the daily range of pH and the bacterial richness
in the rumen (Burdick et al.,, 2022). Ca soap
supplementation increased protozoa population in cull
ewes (Bhat et al., 2013). The supplementation of rumen
protected fat increased the population of F. succinogenes
and R. albus significantly as compared to the diet without
rumen protected fat while the population of R.
flavefaciens and total cellulolytic bacteria was found
significantly lowest in the diet Ca soap (Behan et al., 2019).

Mineral and vitamin supplementation on rumen
microbes

Trace mineral supply from rumen sustained release
boluses influenced rumen microbiota of lactating
yaks, relative abundances of Planctomycetes tended to be
higher and the Erysipelotrichaceae and Tenericutes
bacterium tended to be lower in mineral supplementation
(Zhao et al., 2022). The population of Dasytricha
ruminantium, Ophryoscolex caudatus, Polyplastron
multivesiculatum and Diploplastron affine were significantly
higher in sheep supplemented with organic or inorganic
Se than in animals given the basal diet alone (Mihalikova
et al., 2005). Dietary Se increased total bacteria, total
anaerobic fungi, total protozoa, Ruminococcus albus,
Ruminococcus flavefaciens, Butyrivibrio fibrisolvens (Zhang
et al., 2020b; Liu et al., 2019; Zhang et al., 2020c). Dietary
supplementation of alkaline mineral complex buffer, in
Holstein Friesian cows in transition period changed the
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composition and structure of rumen microorganisms it
considerably increased the abundance of Firmicutes
Ruminococcaceae and Christensenellaceae considerably
14 days before the expected delivery date (Guo et al., 2023).
Total rumen bacterial evenness and diversity in rams were
reduced by supplementation with a Zn AA complex, but not
in rams supplemented with an equal concentration of ZnSO,,
likely due to differences in bioavailability between organic
and inorganically sourced supplement formulations (Ishaq
et al., 2019a). Supplementing with Na,SO, increased the
diversity and the richness of rumen microbiota and the
relative abundances of the phylum Firmicutes and
genera Ruminococcus 2, Rikenellaceae RC9 gut group
and Desulfovibrio, whereas it decreased the relative
abundances of the phylum Bacteroidetes and genera
Prevotella 1, Prevotellaceae UCG-001 and Treponema 2
(Zhao et al., 2022). Major cellulolytic bacteria like
Ruminococcus albus, Ruminococcus flavefaciens and
anaerobic fungi in the rumen Neocallimastix require
thiamine for optimal proliferation (Kandathil and Bandla,
2019). Activity of cellulase and populations of total bacteria,
protozoa, fungi, dominant cellulolytic bacteria, Prevotella
ruminicola and Ruminobacter amylophilus increased
linearly with increase in levels of riboflavin supplementation
in Holstein bulls (Wu et al., 2021).

Phytobiotics on rumen microbiome

Herbal extracts from different sources may have stimulatory
or inhibitory effects on fibrolytic bacteria due to their non
volatile compounds (Khovidhunkit et al., 2000). Essential
oils have inhibitory effects on gram-positive bacteria due to
main bioactive compounds (Cristani et al., 2007; Khorrami
et al., 2015). A study by Patra and Yu (2014) observed that
protozoa population decreased, but increased abundances
of Ruminococcus flavefaciens, Prevotella bryantii, Butyrivibrio
fibrisolvens, Prevotella ruminicola, Clostridium aminophilum
and Ruminobacter amylophilus with increasing doses of
vanillin. Calves receiving 4 mL/d of phytobiotic-rich herbal
extract (Immunofin, IMPE) had a greater abundance of total
bacteria, Ruminococcus albus, Ruminococcus flavefaciens
and Fibrobacter succinogenes (Jahani-Azizabadi et al.,
2022). Saponins not only have adverse effects on rumen
protozoa but also affect specific bacteria and fungi (Wang
et al., 2019b). Supplementation with low levels (10 g/cattle
per day) of tea saponin could significantly increase total
VFAs and the relative abundances of a variety of microbiota
including Proteobacteria, Actinobacteria, Saccharomyces
and Aspergillus (Qu et al., 2023).

Supplementations of rain tree pod meal (0 and 60 g/
kg of total DM intake), containing crude tannins and
saponins at 84 and 143 g/kg of DM, did not affect total
bacterial, Ruminococus albus and viable proteolytic
bacteria, however the numbers of fungi, cellulolytic
bacteria, Fibrobactor succinogenes and Ruminococus
flavefaciens were higher while amylolytic bacteria was lower
and the population of Fibrobactor succinogenes, was found
to be higher (Anantasook et al., 2013). An increased

abundance of Prevotellaceae but decreased abundances
of Ruminococcaceae and Lachnospiraceae were
observed in young growing cattle after they were fed
saponins (Wang et al., 2019b).

The inclusion of chestnut tannins led to the enrichment
of the genera Anaerovibrio, Bibersteinia, Escherichia,
Pseudobutyrivibrio and Streptococcus (Mannelli et al.,
2019). The abundance of Ruminococcus flavefaciens,
methanogenic archaea and protozoa populations were
reduced, whereas total ruminal bacteria were enhanced in
the presence of condensed tannins (Fagundes et al.,
2020). The relative abundances of Methanobrevibacter and
total methanogens decreased following supplementation
with red seaweed extracts, which was consistent with the
decreased CH, production (Choi et al., 2022).

Feed efficiency and rumen microbial diversity

A lower abundance of active bacterial families
of Lachnospiraceae, Lactobacillaceae and Veillonellaceae
have been reported in animals with high feed efficiency (Li
and Guan, 2017). Lower abundance of archaeal species
of Methanobrevibacter smithii were presentin the rumen
contents of animals with higher feed efficiency (Carberry et al.,
2014). In high-efficiency animals, Selenomonas and
members of the Succinivibrionaceae family positively
interacted with each other (Xue et al., 2022).

CONCLUSION

The rumen microbial community is affected by a great
number of internal and external factors, such as host,
physiological status, diet and environment (Pitta et al.,
2014b). The fundamental knowledge on rumen microbes
will lead to the development of advanced methods to
manipulate the rumen microbiome and thereby improve
the production efficiency of ruminants (Wang et al., 2023).
Dietary manipulation offers a viable solution to alter the
rumen microbiome so that the present-day challenges
faced by the ruminant livestock industry is addressed (Stanton
et al.,, 2019). Recent advances in high-throughput
sequencing and bioinformatic analyses have helped to
reveal how the composition of the rumen microbiome varies
significantly with changes in diet. These efforts are
beginning to explain how shifts in the microbiome affect
feed efficiency. Efforts must now be made to understand
how this rumen microbial community interacts with the
physiological function of the rumen and the host, ultimately
influencing both the health and productivity of the animal.
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