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ABSTRACT

Background: Tigers, as iconic apex predators and symbols of biodiversity conservation, face numerous threats to their existence.
Effective tracking and monitoring are essential for understanding and preserving these majestic creatures and their habitats. The
convergence of machine learning and drone technology has emerged as transformative tools in the field of tiger tracking. Drones, or
Unmanned Aerial Vehicles (UAVs), have rapidly become invaluable assets in wildlife conservation. Machine learning algorithms, with
their capacity to analyze complex datasets, make predictions and automate decision-making processes, offer a novel approach to
processing the massive amounts of data generated by drones, including images, sounds and sensor readings.

Methods: This paper explores the historical significance of tiger tracking, the pivotal role of drones in conservation and the
transformative capabilities of machine learning in wildlife monitoring. In this work, an accurate framework for tiger detection based
on YOLOVS is utilized.

Result: By examining the interplay between machine learning, drone technology and tiger conservation, this paper highlights the
potential for innovation and the challenges that lie ahead, promising a brighter future for these iconic creatures and their ecosystems.
The fine-tuned YOLOvV8 model demonstrates exceptional object detection performance, boasting a mAP50 of 0.9820 and a mAP50-

95 of 0.6856, coupled with precise classification (precision 0.9646) and robust instance capture (recall 0.9580).

Key words: Conservation, Drone, Ecosystem, Machine-learning, Tiger.

INTRODUCTION

The monitoring and preservation of tigers pose a crucial
and long-lasting problem for both environmentalists and
conservationists (Sarkar et al., 2021). Technological
advancements have greatly impacted wildlife conservation
efforts, with drones, also known as Unmanned Aerial
Vehicles (UAVs), emerging as a particularly valuable tool
for conservationists. (Ancin-Murguzur et al., 2020).
Machine learning utilizes the capabilities of artificial
intelligence (Al) to analyze complex patterns, generate
forecasts and automate decision-making procedures
(Aguilar-Lazcano et al., 2023).

This paper explores the convergence of machine
learning and drone technology in tiger tracking. It discusses
the significance of tiger tracking, the role of drones in
conservation and the transformative capabilities of machine
learning in wildlife monitoring. The paper highlights the
relevance of Al-powered drone technology in ensuring the
survival of tigers and their ecosystems. The experimental
data is acquired using YOLOvV8. The dataset is obtained
from the Kaggle database. The number of individual animals
that can be observed by humans is restricted due to their
physical and cognitive limitations (Browning, 2022). A
thorough approach to tiger monitoring in difficult
environments is ensured by integrating data from various
sources, such as ground sensors and local knowledge. This
enables researchers to study tigers in their own
environments while minimizing any disruption (Kamran
et al., 2021). Furthermore, the unobtrusive characteristic of
drones minimizes anxiety in tigers and guarantees the
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preservation of their innate habits without disturbance (Li
et al., 2023). This tackles a prevalent issue linked to
conventional land-based tracking techniques. Drones are
widely recognized for their capacity to rapidly traverse
extensive regions, rendering them very efficient and
economical for gathering data (Hodge et al., 2021).

Literature review

Drones have become essential instruments in the field of
tiger conservation, allowing conservationists to view and
track the activities of these elusive top predators in ways
that were previously difficult or invasive (Hossain, 2022; Choi
et al., 2023; Min et al., 2024). Artificial intelligence (Al) has
proven useful in a variety of fields besides the cultivation of
legume crops, such as big data analysis and animal
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research. Al algorithms are being used more and more to
handle enormous volumes of data effectively, providing
insights and forecasts that help decision-makers across a
range of industries. Furthermore, artificial intelligence (Al)
methods are being used in animal research to investigate
behavior patterns, genetic variables and health outcomes,
among other topics, advancing our knowledge of and efforts
to improve animal welfare (Na et al., 2024; Kim and Kim,
2023; Porwal et al. 2024; Wasik and Pattinson 2024).
Quadcopters and hexacopters offer a unique combination
of stability and agility that makes them ideal for shooting
close-up photos and movies over water or in densely
forested areas since they can take off and land vertically.
These drones’ observation time varies based on factors
including battery capacity and flying mission conditions
(Hildmann et al., 2019; Wilson et al., 2022). In a single flight,
hexacopters and quadcopters may often record observation
times of 20 to 30 minutes. Table 1 presents the advantages
and disadvantages of quadcopters/hexacopters compared
to traditional methods.

Machine learning and its applications

Machine learning is widely used in various fields, such as
healthcare, finance and notably, animal tracking (Directions
2023). Some techniques that have been developed using
machine and deep learning are mentioned in Table 2 for
wild life conservation.

The integration of machine learning with drone
technology

Machine learning algorithms analyze this data, enabling
instantaneous decision-making and automation. Machine
learning enabling the recognition of tigers in photographs
taken by drones and offers understanding of their actions
(Alrayes et al., 2022; Cho, 2024; Maltare, 2023). The
methods employed for the collection of data are:

Cameras

They provide crucial visual data for the purpose of monitoring
(Tuia et al., 2022). High-quality cameras provide intricate
photos and films, facilitating the identification of individual
tigers through distinctive characteristics (Shi et al., 2022).
Also, thermal imaging cameras which are capable of
detecting variations in temperature, rendering them highly
effective for following nocturnal activities and detecting tigers
in settings with little illumination (Butcher et al., 2021).

Sensors

Various types of sensors are employed to gather diverse
sets of information, enhancing the understanding of tiger
behavior, movements and ecological interactions (Ram
et al., 2023). Similarly, LIDAR (Light Detection and Ranging)
technology produces intricate 3D maps of the landscape,
which can assist in evaluating habitats and delineating tiger
territory (Shanley et al., 2021). The LiDAR-based habitat
model had the lowest classification accuracy (OOB = 5.8%,
k = 0.77). Multispectral and Hyperspectral Sensors have
the ability to gather data that extends beyond the range of

wavelengths visible to the human eye, thereby uncovering
specific information about the well-being of vegetation and the
surrounding environmental circumstances (Ad&o et al., 2017).

Satellite imagery

Satellite imagery offers a bird’s-eye view of tiger habitats
and can be used to assess changes in land cover and habitat
fragmentation (Ahmad et al., 2023). The accuracy evaluation
revealed a Kappa value of 0.87 and an overall classification
accuracy of 88.5%.

Data Pre-processing and feature extraction

There are a number of machine learning techniques and
algorithms that are frequently used in the field of wildlife
monitoring, with a specific focus on tigers:

i). Supervised learning algorithms
Support Vector Machines (SVM)

SVM are commonly employed for the purpose of species
classification. It operates by identifying the most
advantageous hyper plane that effectively distinguishes
several categories of data, such as tigers from other animals
or background (Vidal et al., 2021).

Decision trees

Decision trees are highly efficient for the purpose of species
identification. The classification of animals is accomplished
by the utilization of a hierarchical decision tree graph, which
takes into account characteristics such as size, stripes and
color patterns (Song and Lu, 2015).

ii). Unsupervised learning techniques
Clustering Algorithm

Clustering techniques such as k-means are useful for
categorizing tigers according on their activities. For
instance, they can assist in identifying social hierarchies
or detecting atypical behavioural patterns, which could
potentially indicate the presence of sickness or stress
(Tabianan et al., 2022).

iii). Deep learning
Convolutional neural networks (CNNs)

CNNs are highly proficient in image analysis and are
commonly employed to detect and monitor tigers in photos
and videos obtained from camera traps or drones (Kishore
et al., 2021). By discerning distinctive characteristics, they
can distinguish certain individuals, enabling the continuous
tracking of individual tigers (Fergus et al., 2023). The
experiment showed that, with an accuracy of 99.31%, it is
feasible to obtain high animal detection accuracy across
the 12 species.

Recurrent neural networks (RNNs)

RNNSs are utilized in the study of time-series data, enabling
the monitoring of actions and movements over a while. They
can assist in comprehending tiger behaviors such as mating,
hunting, or territorial patrolling (Zhang, 2012).
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2.4 Tracking and localization algorithms

Tiger monitoring relies on tracking and localization
algorithms, which offer up-to-date data on the exact
whereabouts and motion of these creatures. Various
algorithms are utilized for this objective such as.

Kalman filters

Kalman filters are iterative estimators that forecast the future
whereabouts of a tiger by leveraging its past coordinates.
These devices are extremely useful for accurately tracking
and determining the location of objects or individuals in real-
time, especially in scenarios where the data may be
unreliable or ambiguous. In contrast to tigers (AUC= 0.83,
TSS= 0.66), leopard distribution maps had a notably high
degree of discrimination (AUC= 0.90, TSS= 0.80) (Rather
et al., 2020).

Particle filters

Particle filters are capable of estimating the probability
distribution of a tiger’s location, which makes them well-
suited for situations where there is uncertainty or variability
in the tracking data. They are especially beneficial for
monitoring numerous tigers concurrently (Kambhampati
et al., 2004).

Hidden markov models (HMMs)

Hidden markov models (HMMs) are employed to represent
the locomotion patterns of tigers. Through the analysis of
seen data, it is possible to make predictions about concealed
states, such as the whereabouts of a tiger, as well as the
transitions that occur between these states (Joo et al., 2013).

Image and video analysis techniques

Convolutional Neural Networks (CNNs) play a crucial role
in the detection of tigers and can accurately distinguish
individual tigers by recognizing their unique stripe patterns
and facial traits (Shi et al., 2020). In addition, tigers may be
rapidly detected and localized in photos or movies using
object detection techniques. YOLO (You Only Look Once)
techniques provide swift detection and delineation of tigers,
hence facilitating expedient analysis (Srivastava et al., 2021).
On the basis of this data, predictive algorithms, which
frequently employ recurrent neural networks (RNNs), can
predict future tiger behavior. These predictions are useful
for organizing conservation strategies and mitigating
conflicts between humans and tigers (Chatterjee et al.,

2022).. In Sumatra, Indonesia, machine learning and thermal
imaging drones were utilized to monitor leopards at night.
This innovative method revealed crucial behavioural insights,
such as foraging patterns and territorial migrations (Rietz
et al., 2023). Machine learning algorithms were employed
at the Chitwan National Park in Nepal to analyze LIDAR
data collected by drones. The provision of precise 3D maps
of the park’s landscape significantly improved habitat
preservation efforts (Wu et al., 2023).

MATERIALS AND METHODS
Dataset description

The dataset is sourced from Kaggle. The dataset contains
a total of 4413 images of tigers. It is divided into training,
validation and test datasets in the ratio of 80:10:10.

YOLOvVS8 overview

In this work, the tiger detection method is implemented using
YOLOV8 from Ultralytics.

The most recent version of the YOLO object detection
model, known as YOLOV8, keeps the same architecture as
its predecessors while bringing about several notable
improvements. Feature pyramid network (FPN) and Path
aggregation network (PAN) are two innovative neural
network designs that are noteworthy advances. Furthermore,
a new labeling tool with features like customizable hotkeys,
labeling shortcuts and auto-labeling expedites the annotation
process. Together, these tools make image annotation for
model training simpler. The FPN creates feature maps that
can detect objects at a variety of scales and resolutions by
methodically decreasing spatial resolution while expanding
feature channels. The PAN design, on the other hand,
improves the network’s capacity to capture features at
various scales and resolutions by aggregating features from
several network levels through skip connections. This
capacity is essential for accurately identifying items that differ
in size and shape.

The backbone, neck and head are the three primary
parts of the YOLOvV8 model's overall architecture. From the
input image, the backbone network extracts relevant
features. The neck functions as a bridge between the head
and backbone networks, improving feature resolution and
decreasing feature map dimensions at the same time. The
head network is made up of three detection networks, one
for each type of object such as small, medium and large

Table 1: Comparison of Quadcopters/hexacopters and traditional flying methods.

Methods Advantage

Disadvantage Flight tim

Vertical takeoff/landing,
agility, stability
Longer flight times

Quadcopters/Hexacopters
Fixed-wing drones
Manned aircraft Large coverage area,
longer flight times

Cost-effective, stable
platform

Ground-based methods

Limited flight time 20-30 minutes per flight
Limited agility in
confined spaces
Expensive, less agility,
environmental impact
Limited mobility, restricted
viewpoints

1-2 hours per flight
Several hours

Continuous monitoring




Application of Machine Learning in Drone Technology for Tracking of Tigers

that work together to provide an all-encompassing and
adaptable object detection system.

Parameters and metrices
Learning rates (Ir/pgo, Ir/pg1l, Ir/pg2)

The amount that the model modifies its parameters while
being trained is determined by learning rates. The model
will effectively converge without fluctuating or becoming
stuck if the learning rate is balanced. To get the best
performance out of the tiger tracking model, these rates may
have to be adjusted.

Metrics
mAP50-95(B) and mAP50(B)

One important metric for object detection is Mean Average
Precision (mAP), It displays the model's object location
accuracy. Higher mAP values, especially in the 50-95%
confidence interval, signify improved tiger tracking precision.

Precision (B) and Recall (B)

Precision measures the accuracy of tiger predictions, while
recall assesses the model's ability to detect all actual tigers.
A balance is crucial; high precision ensures accurate
predictions, while high recall prevents missing tigers.

Features of the model

Model/GFLOPs

The model's computational complexity is reflected in the
quantity of floating-point operations performed per second.
For real-time applications, like tracking tigers, a lower
GFLOPs value ensures more efficient processing.
Model/parameters

The complexity of the model is indicated by the number
of parameters. To capture the finer details of tigers

without overfitting the training set, complexity must be
balanced.

PyTorch model/speed_ms

The processing efficiency of the model is indicated by speed
in milliseconds. For real-time tiger tracking, faster processing
is preferred because it allows for quicker reactions to
environmental changes.

Loss Values (val/box_loss, val/cls_loss, val/dfl_loss,
train/box_loss, train/cls_loss, train/dfl_loss)

The model's learning efficiency from the tiger tracking
dataset is indicated by loss values experienced during
training and validation. Lower loss values signify successful
training, ensuring that the model performs better when
applied to new data.

RESULTS AND DISCUSSION

Graph 1 shows graphics of different metrics and values
associated with the YOLOvV8 model’s training and evaluation
for tracking tigers.

The outputs of tiger tracking using YOLOvV8 are
presented in Table 3. The learning rates (Ir/pgO0, Ir/pgl, Ir/
pg2) are set to 0.0001. The model has outstanding object
detection capabilities, with an accuracy of 0.9820 for mean
average precision at 50% intersection over union (mAP50).
A larger range of intersection over union criteria (50-95%)
is taken into account and the mAP50-95 of 0.6856 indicates
strong performance over a variety of detection accuracy
levels. With high precision and recall metrics of 0.9646 and
0.9580, respectively, the model demonstrates its accuracy
in identifying and capturing tigers.

The computational efficiency of the model is
demonstrated by the number of parameters (26,854,899)
and GFLOPs (79.10). In terms of performance, the model
shows a relatively fast inference time, analyzing data in 6.60
milliseconds using PyTorch. In the training (train/box_loss,
train/cls_loss, train/dfl_loss) and validation (val/box_loss,
vallcls_loss, val/dfl_loss) phases, the model's performance

Table 2: Resources for machine and deep learning based wild life conservation.

Name Description References

AIDE Tasks: Annotation; detection; classification; segmentation (Kellenberger et al., 2020)
This is a web-based labeling platform that is free, open source
and intended primarily for large-scale ecological picture studies.

Wildbook Tasks: Detection (Berger-wolf et al., 2017)
Utilized TensorFlow object detection API with bounding boxes on
hundreds of thousands of camera trap photos from various ecosystems.

DeepLabCut Tasks: Pose estimation and behavioral analysis (Mathis et al., 2021)

This is a posture estimation toolbox that is both free and open-source.

It utilizes deep learning techniques.

Wildlife Insights Tasks: Filtering

(Ahumada et al., 2019)

Wildlife Insights employs a filtering system to remove empty photographs

and offers species identification for images that receive high scores from

the computer vision model.
DeepPoseKit

Tasks: Pose estimation and behavioral analysis

(Graving et al., 2019)

This is a posture estimation toolbox that is both free and open-source. It is built on deep learning techniques.
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Graph 1: Graphics of different metrices.

Fig 1: The sample picture of tracking of tigers using YOLOVS.

Table 3: Results of tiger tracking using YOLOVS.

Learning rates (Ir/pgO0, Ir/pgl, Ir/pg2) 0.0001
metrics/mAP50(B) 0.9820
metrics/mAP50-95(B) 0.6856
metrics/precision(B) 0.9646
metrics/recall(B) 0.9580
model/GFLOPs 79.10
model/parameters 26854899
model/speed_PyTorch(ms) 6.60
train/box_loss 0.8345
train/cls_loss 0.3717
train/dfl_loss 1.105
val/box_loss 1.1832
vallcls_loss 0.4189
val/dfl_loss 1.336

in bounding box prediction, class prediction and detection
face localization is indicated by the specified losses. The
results show that the model is well-trained and achieves a
good balance between precision and recall.

Fig 1 shows the sample results for the YOLOvV8 model.
The YOLOv8 method has the highest degree of confidence
in detecting every target.

CONCLUSION

The combination of drone technology and machine learning
has fundamentally transformed the field of tiger tracking,
providing novel and effective answers to the obstacles
encountered in their conservation efforts. The welfare and
protection of tigers are of utmost importance for
conservationists and researchers. In order to ensure their
ethical treatment, it is essential to minimize stress and
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disturbance, strictly adhere to appropriate protocols and
collaborate with local communities and stakeholders, where
necessary, to obtain their consent and involve them in
conservation efforts (Rieder et al., 2021). Ethical tiger
tracking should focus on conservation outcomes that
safeguard tiger populations and their habitats, with
transparent reporting through accurate documentation and
conscientious utilization of tracking data for conservation
purposes (Isabelle and Westerlund, 2022).

In this paper, tiger detection is done using YOLOVS.
Exhibiting outstanding object detection capabilities, the fine-
tuned YOLOV8 model achieves a remarkable mAP50 of
0.9820 and a mAP50-95 of 0.6856. It excels in precise
classification (precision 0.9646) and adeptly captures
instances with a strong recall of 0.9580.

Future directions

The integration of drone technology and machine learning
offers a promising solution for solving the conservation
difficulties faced by tigers, thereby shaping the future of tiger
tracking. Moreover, there is an increasing emphasis on
incorporating cutting-edge sensor technologies such as
LiDAR, hyperspectral imaging and thermal imaging into
drone systems. Furthermore, there is a requirement for
improvements in the real-time data processing capabilities
of drones to facilitate prompt analysis and decision-making
in addressing emergent conservation concerns.
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