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ABSTRACT

Background: Malnutrition is a serious worldwide public health concern that affects both adults and children. It has a substantial
negative impact on society and the economy. COVID-19 has exacerbated this problem by reducing household income and access
to food. Legumes, especially chickpeas, in particular, are a great source of important nutrients and can help alleviate protein-energy
malnutrition. But soil salinity is a big problem for growing chickpeas and, by extension, for food security worldwide. The present
study was to estimate the effect of minerals under salinity stress on protein fractions in different genotypes of chickpea. This study
explores the potential of calcium (Ca) and potassium (K) supplementation to alleviate salinity stress and improve protein content and
quality in chickpeas.

Methods: Two chickpea cultivars, salt-sensitive (C-235) and salt-tolerant (CSG-8962), were subjected to varying levels of salinity
and mineral treatments (in a ratio of 7:2:1) to examine their effect on protein fractions, which were extracted and estimated.
Result: The findings show that, under the conditions of salinity stress, the simultaneous application of calcium and potassium
considerably increases the amounts of protein fractions (albumins, globulins, glutelins and prolamins). These results highlight the
significance of mineral supplements as a sustainable approach to increasing agricultural yields and fighting malnutrition in salty
environments.
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INTRODUCTION

Malnutrition, a global health crisis, impacts all ages,
hinders economies and is a major cause of child death
(WHO, 2020). 45% of child deaths under age five are due
to malnutrition (Katharina et al., 2017). Legumes, a
sustainable and affordable protein source (Kamboj and
Nanda, 2018; Bessada et al., 2019), can be key in
combating malnutrition, especially when incorporated with
plant-based diets (Willett et al., 2019; Balasubramanian
et al., 2023).

Legumes are known for their high seed protein content
and vital role in human nutrition and agro-ecosystems
(Farooq et al., 2018). Among legumes, chickpea (Cicer
arietinum L.) is important for food security and enriching
the soil fertility (Bulut et al., 2023). It is consumed as a
good source of proteins (~16% to 28%), several minerals,
phenolics, oligosaccharides, soluble-insoluble fibres,
essential nutrients such as antioxidants, biologically active
compounds and vitamins (Meena et al., 2015). In both area
and yield, India dominates the global chickpea market,
producing over 65% of the world’'s supply (Thaware et al.,
2017). However, its growth, yield and seed protein quality
are negatively affected by various abiotic stresses such as
heavy metals, heat stress, salinity, drought, etc. (Varma
and Meena, 2016). Among these stresses, the salinity
limits global chickpea production by 8-10% (Ahmed et al.,
2021). More than 8.7% of sail is salt-affected (833 million
hectares) around the globe (FAO, 2021). Therefore, plant
scientists are designing several strategies to alleviate the
harmful effects of salt stress. However, many of these are
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adequate but not profitable. As minerals play a crucial role
in regulating ion balance and osmotic processes in plants,
recently exogenous mineral supply (Ca and K) has been
employed to mitigate the salinity stress (Shoukat et al.,
2023). Therefore, considering the importance of chickpeas
in human nutrition and the impact of increasing soil salinity
on plants, the current work was undertaken to understand
the role of calcium (Ca) and potassium (K) in alleviating
the salinity stress and restoring the seed protein quantity/
quality in chickpeas.

MATERIALS AND METHODS

Chickpea seeds, representing a salt-sensitive genotype
(C-235) and a salt-tolerant genotype (CSG-8962), were
sourced from Chaudhary Charan Singh Haryana
Agricultural University (CCS HAU) in Hisar, Haryana and
the Central Soil Salinity Research Institute (CSSRI) in
Karnal, Haryana, respectively. In the final week of October,
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a controlled pot-based experiment was conducted. To
examine the effects of salinity stress and its alleviation
through minerals, calcium (Ca) and potassium (K) on the
field experiment located at the Botany Department,
Kurukshetra University, Kurukshetra, Haryana, India. Nine
sets of pots filled with soil were maintained for salinity
treatment along with mineral treatments (i.e., eight sets
for supplying different minerals individually and in
combinations and one set as control). The crop was thinned
out so that every pot would have five plants in it. Watering
was done for crops according to requirements throughout
their vegetative growth phase.

Three distinct salinity levels, 4 dS m’, 7 dS m" and 10
dS mr, were given to plants that were kept using a 7:2:1 wiv
ratio of NaCl, Na,SO,and CacCl, in accordance with
Richards’ formulation (1954). A saline solution of 200 ml
was given to each pot. To estimate the E.C. of soil in pots,
the soil was blended with 60 ml of DDW, stirring constantly
and then allowed to settle for 20 to 30 minutes. For
alleviation of salinity, calcium (Ca) and potassium (K) in
eight different combinations, i.e. Ca,, K, Ca, K, Ca,K,,
Ca,K,, K,Ca, and K. Ca, were supplied to plants, where
subscripts 2 and 5 represent the two-time and five-times
concentrations of respective nutrients. Ca was provided
as calcium chloride dihydrate (CacCl,.2H,0) and K was
supplied as potassium sulfate (K,SO,). The mature seeds
were collected, dried and then processed into seed meal.
Hexane (10 ml/g seed meal) was used for defatting seed
meal in order to estimate its protein content. The total
protein in the seed was then fractionated into four fractions.

Fractionation of seed proteins

Fractionation studies were conducted using an altered
version of the proposed method established by Croy et al.
in 1984. Glutamins and prolamins were extracted in 70%

ethanol and 0.1 N NaOH, respectively; albumins and
globulins were isolated through extraction using a 50 mM
borate buffer (pH 8) and both were then separated by
dialysis.

Estimation of four fractions

Estimation of four fractions was performed using BSA
standard curve explained by Bradford formulation (1976).

Statistical analysis

The variability of the data is expressed as the mean value
+ standard error (SE) in the tables and figures. Each
replication was measured using a mean of three readings.
Statistical Packages for Social Sciences (SPSS) version
16.0 and Microsoft Excel version 2010 were used for
statistical evaluation. To find the difference between the
data, the same programme was utilised to conduct a post
hoc test (Duncan). To determine whether there were
statistically significant differences between the different
estimations, a one-way ANOVA was used.

RESULTS AND DISCUSSION
The effects of mineral supply at different levels of salinity
on the amount of four protein fractions are shown in Fig 1-4.
With the increase in minerals supply, the amount of four
fractions increased under different levels of salinity.
Albumins increased from 27.9 to 31.7, 25.8 to 31.0
and 23.9 to 30.2 mg/g seed meal in S.T. genotypes under
4 dS m, 7 dS m and 10 dS m- salinity levels along with the
application of Ca, to Ca,K, respectively (Fig 1). In S.S.
genotype, it increased 26.8 to 29.9, 23.8 to 29.7, 21.7 to
27.8 mg/g seed meal at increasing levels of 4 dS m-, 7 dS
m- and 10 dS m- salinity with change in mineral regime
respectively (Fig 1). In case of globulins (Fig 2), they
increased under all three increasing salinity levels from
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Fig 1: Effect of salinity and minerals on the albumin fraction.
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119.2 to 124.3, 117.2 to 123.4 and 115.7 to 123.5 mg/g
seed meal in S.T. genotype and from 118.4 to 123.3, 115.8
to 121.8 and 113.3 to 121.1 mg/g seed meal in S.S. variety
with switching the minerals from Ca, to Ca respectively.
Glutelins and prolamins also increased under salinity
stress with the use of minerals with the addition of CaK;
over Ca,. Glutelins content improved (Fig 3) at all salinity
stress levels from 25.8 to 27.2, 23.5 to 26.1 and 21.7 to
25.7 mg/g seed meal in S.T. while in S.S. genotype it
increased from 24.1 to 25.7, 21.8 to 25.5 and 18.7 to 24.5
mg/g seed meal. Prolamins, under all salinity levels,
exhibited minor improvements by application of minerals
of all combinations, Ca,to CaK; (Fig 4). Application of Ca
and K individually as well as in combination was found to
be gradual in total amount and content of four fractions

under increasing levels of salinity stress (Fig 1-4) which
aligns with findings of Waraich et al. 2012; Wang et al. 2013
and Tripathi et al. (2014).

Mineral application alleviated the detrimental effect of
the salinity in both genotypes, but more so in the case of
genotypes that are more sensitive to salinity than those
that are tolerant of it, as observed in chickpea and brassica
(Mann et al., 2019; Naveed et al., 2020). It was observed
that as salinity level increased along with the application of
minerals, the amount of four fractions also improved which
aligned with the statement that K* and Ca?* were added
together, the injurious effects of salt stress were
significantly reduced (Pathak et al., 2020). Also, it was
noticed that sensitive genotypes exhibited more
improvement than tolerant genotypes (Fig 1-4), as
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observed by Rahman et al. (2005) in wheat, which may be
due to improved concentration of K* over Na* ions, which
improved transpiration efficiency, enriched antioxidant
systems by osmotic potential regulations and ultimately
enhanced immune responses of plants towards salinity
stress (Zhu et al., 2022; Rahman et al., 2022; levinsh et al.,
2022).

At the maximum stress level (10 dS m), highest
improvement in the amount of all four fractions was noticed
under nutrient supply, as observed in rice by Abdel-Haliem
et al. (2017). Prolamins reflected a minor improvement in
the four fractions under increasing levels of salinity with
the application of minerals. The combination of minerals
(Ca,K,) proved to be the best way to lessen the impact of
salinity in chickpeas, which justified the findings of Shariat-
Jafari et al. (2009), according to which the addition of K*
and Ca,* collectively led to improvements in morphological
characteristics and plant development in sorghum, which
already proved in maize (Zidan et al., 1991).

Calcium was found to minimize the injurious effect of
salinity stress on germination in peas, wheat, common
sunflower, tomato and wild spinach (Turkmen et al., 2004;
Liu and Wang, 2010). Calcium binds to organic molecules
that have negative groups, like phosphate and carboxyl
groups in sugars, proteins and phospholipids. Ca helps
to maintain the membrane’s integrity in both normal and
stressful situations (Maathuis, 2009). Ca also helps plants
to absorb nutrients, control hormones and enzymes and
keep cell membranes stable to protect them from abiotic
stress (Rahman et al., 2015). By activating Ca?*-dependent
stress-responsive genes, ROS play a regulatory role in
expressing plant responses to stress, as proved in
Arabidopsis (Mittler et al., 2004). Through the stronger
cystolic Ca?* signal, the Ca?* binding protein then adjusts
and protects plants’ responses to stress conditions (Parvin

et al.,, 2019). The Ca-dependent protein kinases (CDPK)
control the physiological reactions of plants to abiotic
stress, such as stomatal movement, K* absorption and
particular gene expression that respond to stress (Yu et al.,
2007). Additionally, Ca?* regulates the activity of antioxidant
enzymes like SOD, CAT and POD and an accumulation of
antioxidants promotes defence against salt stress
(Shoresh et al. 2011).

Potassium was examined to alleviate abiotic stress in
rice, wheat, oats, Indian mustard, cotton, etc. (Zain et al.,
2014; Ahanger et al., 2015; Zahoor et al., 2017; Singh et al.,
2019; Rani et al., 2021). Under abiotic stress conditions,
potassium (K) is an essential macronutrient for
physiological development and improved agricultural
growth of plants (Wang et al., 2017). Additionally, K* helps
to regulate numerous biochemical procedures leading to
protein syntheses, metabolism of carbohydrates, enzyme
activation and water regulation in plants, as well as
photosynthetic processes, transport of the phloem and the
exchange of cation-anion balance (Shabala and Cuin,
2008). K* is important in the osmotic regulations by
sustaining the turgor pressure of the cell, regulating enzyme
activation, cytoplasmic homeostasis, protein synthesis and
membrane potential during salinity stress (Almeida et al.
2017). A sufficient supply of minerals is necessary for
synthesising proteins, folding and the activation of enzyme
systems when they are subjected to salinity stress to
reverse damages due to it. Adding K helps raise the
potassium-sodium ionic ratio (K*/Na*), which then makes
it easier for higher-affinity K* transporters to move Na* and
also move K* along with Na*, which increases Na* tolerance
(Su et al., 2015). These processes are necessary for the
maintenance of the correct assembly of protein fractions,
protein defences and seed quality in legumes
(Gharibzahedi et al., 2017; Nawaz et al., 2020).
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As per the findings of Pfluger and Mengel (1972), the
synthesis of the coenzyme nicotinamide adenine
dinucleotide phosphate (NADPH), involved in
photosynthesis, is activated by K. Thus, the increased rate
of photosynthesis yields more assimilates, such as amino
acids and sucrose, which can be incorporated into storage
compounds like seed storage proteins (Egli and Bruening,
2004).

CONCLUSION

Providing food security is a major concern in agriculture,
but different abiotic stresses present a major obstacle to
this endeavor. A changing climate exacerbates the negative
impact of the stress on plants. Supplying plants with the
proper nutrition can assist them in tolerating stress.
Nutrients like calcium and potassium, in different
combinations, help plants in their osmotic adjustments to
stressed abiotic conditions. This strategy provides
immediate relief to plants against stress and enhances
their seed protein quality. In our study we found that among
all tested combinations, Ca,K, was most effective in
increasing protein content in all four fractions under salinity
stress. Improving the seed protein quantity and quality is
the primary focus of plant scientists. Supplying plants with
a balanced combination of nutrients, including essential
amino acids, can additionally enhance their stress
tolerance and protein quality. Further studies are required
to analyze the effect of additional mineral supply on crop
yield and mechanisms of action of these nutrients in plant
defense under stress conditions.
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