

SSR-marker Assisted Evaluation of Genetic Diversity in Greengram [Vigna radiata (L.) Wilcezk]

Tapas Ranjan Das1, Bhabendra Baisakh2

10.18805/LR-5151

ABSTRACT

Background: Assessing genetic diversity in greengram is a prerequisite for its genetic improvement for yield and quality. DNA markers such as simple sequence repeats (SSRs) have been preferred in this crop for the analysis of genetic diversity because SSR markers are locus-specific, widely dispersed throughout the genome, highly polymorphic due to variation in repeat units, highly informative because of co-dominant nature, high reproducibility and ease of assay by PCR (Polymerase chain reaction). The current study aimed to study the genetic diversity among the mutants of greengram at the molecular level using SSR markers.

Methods: In this study, twenty-five SSR markers were used to analyze the genetic diversity amongst twenty mutant genotypes of greengram along with their parents. Genomic DNA was isolated from the leaves by using the standard CTAB DNA extraction method. Then DNA purification and PCR amplifications were carried out. The genetic variability and diversity among genotypes was examined by assessing the scoring of the amplified bands by SSR -PCR amplification.

Result: Seventeen SSR primers generated 102 polymorphic bands with an average of the six polymorphic bands per primer. The number of alleles per locus ranged from four to nine. The size of amplification product varied for each primer and the range found to be 100bp to 2000bp. The mean polymorphic information content (PIC) value for SSR markers was found to be 0.6335. The value of Jaccard's similarity coefficient had ranged from 0.07-0.70 with an average value of 0.38. The dendrogram constructed on SSR molecular markers data through the unweighted pair group method with arithmetic averages (UPGMA) method had enabled grouping of the genotypes into thirteen clusters. The results indicate the usefulness of SSR markers in the assessment of genetic variability and diversity among the mutant genotypes of greengram.

Key words: Genetic diversity, Greengram, Molecular marker, Mutants, PIC, SSR, UPGMA.

INTRODUCTION

Greengram [Vigna radiata (L.) Wilczek], also known as goldengram, mungbean, mashbean and moong, is one of the most important pulse crops and belongs to the family Fabaceae (Leguminosae). It is a self-pollinated diploid species with a chromosome number of 2n = 22 and an estimated genome size of 579 Mbp (Arumuganathan and Earle, 1991). Based on domesticated diversity data and archeological evidence, the origin of greengram is considered to be India and during the early domestication process, its cultivation migrated to other Asian countries and to Africa, Australia, South America and other parts of the World (Fuller and Harvey, 2006; Kim et al., 2015; Vishnu-Mittre, 1974). There is great interest in genetic and genomic analyses of greengram due to this crop's valuable nutritional and health benefits, especially in developing countries, where malnutrition is a major issue. It has been known to be an excellent source of dietary fiber, high-quality protein, minerals, vitamins and significant amounts of bioactive compounds, including polysaccharides, polyphenols and peptides, therefore, becoming a popular functional food in promoting good health. The greengram has been documented to ameliorate hyperglycemia, hyperlipemia and hypertension and prevent cancer and melanogenesis, as well as possess hepatoprotective and immunomodulatory activities (Hou et al., 2019). This crop was selected by AVRDC-The World Vegetable Center as an iron-rich food source to fulfill nutritional

¹Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi-110 012, India.

²Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar-751 003, Odisha, India.

Corresponding Author: Tapas Ranjan Das, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi-110 012, India. Email: trdas.iari@gmail.com

How to cite this article: Das, T.R. and Baisakh, B. (2023). SSRmarker Assisted Evaluation of Genetic Diversity in Greengram [Vigna radiata (L.) Wilcezk]. Legume Research. DOI: 10.18805/

<u>Submitted: 10-04-2023</u> <u>Accepted: 23-10-2023</u> <u>Online: 28-11-2023</u>

needs (Vijayalakshmi et al., 2003). The low productivity of this crop can be attributed to a narrow genetic base resulting in low yield potential and susceptibility to biotic and abiotic stresses. The knowledge of genetic diversity has a significant impact on the improvement of crop plants and this information has been successfully used for efficient germplasm management, fingerprinting and genotype selection. The genetic diversity within the genotypes of mungbean based on the morphological trait is comparatively low because it is predominantly self-pollinating (Sudha, 2009). Recently DNA markers such as SSRs have been preferred in this crop for the analysis of genetic diversity because SSR markers are locus-specific, widely dispersed throughout the genome, highly polymorphic due to variation in repeat units, highly

informative because of co-dominant nature, high reproducibility and ease of assay by PCR (Powell *et al.*, 1996; Kuleung *et al.*, 2004; Liu *et al.*, 2013; Zia *et al.*, 2014; Chen *et al.*, 2015). The present study was thus undertaken to study the genetic diversity among mutants of greengram at the molecular level using SSR markers.

MATERIALS AND METHODS

Plant materials and DNA extraction

In the present investigation, seeds material of twenty superior productive mutants (Table 1) along with their parent Sujata and OBGG-52, obtained from the harvested material of $\rm M_{\rm 5}$ generation were taken for SSR analysis. Seedlings were grown in pots and fresh young leaf samples were collected from 10-20 days old seedlings before sunrise and washed thoroughly in distilled water and stored at -20°C for further analysis. Total genomic DNA from the leaves was isolated by using the standard CTAB (cetyl trimethyl ammonium bromide) DNA extraction method (Doyle and Doyle, 1990).

Purification of DNA

For purification of DNA, extracted DNA was treated with RNAse-A at a concentration of 60 µg/ml of DNA and kept for incubation at 37°C for an hour with continuous shaking in the water bath. After one hour it was removed from the water bath and an equal volume of chloroform: isoamyl alcohol (24:1) was added and mixed thoroughly. The solution was then centrifuged at 10000 rpm for 10 minutes and the upper aqueous phase was pipetted out. Starting from the addition of chloroform-isoamyl alcohol, the entire process was repeated twice. For further purification, the DNA solution was washed with phenol:chloroform: isoamyl alcohol (25:24:I) and subsequently thrice with chloroform: isoamyl alcohol (24:1). The upper aqueous phase was separated after centrifugation as per the procedure described earlier and mixed with 1/10th volume of 3M sodium acetate (pH 4.8). DNA was precipitated by adding 2.5 volumes of chilled absolute ethanol and into a pellet by centrifugation at 12000 rpm. The pellet was washed twice with 70% ethanol carefully and dried under vacuum. DNA quality was confirmed by electrophoresis on 0.8% agarose gel and quantified by using a UV-vis spectrophotometer. After quantification, the DNA was diluted in TE buffer (pH 8.0) to a working concentration of 25 ng/µl for PCR analysis and stored at -20°C.

SSR primer amplification

For SSR analysis, PCR amplifications were carried out in a total volume of 20 μ l containing 50 ng of template DNA, 1 unit of Taq DNA polymerase, 0.25 mM each dNTP, 0.25 mM primer (each forward and reverse) in 1× PCR reaction buffer. Template DNA was initially pre-denaturated at 94°C for 3 min. followed by 35 cycles at 94°C for one min denaturation, primer annealing between 46-53°C (depending upon primer) for one min and extension at 72°C for one min. Finally, incubated at 72°C for ten minutes to complete the primer

extension process. The obtained PCR products were used for electrophoresis on 1.5% agarose gels stained with ethidium bromide at 70 V for 3 hours and photographed under UV light using Gel Doc system (Genai image system, UVITech, UK). The gel doc photograph was used for documentation and scoring the bands.

Data analysis

The potential of the marker for estimating genetic variability and diversity was examined by assessing the marker informativeness through scoring the amplified bands by SSR-PCR amplification based on the presence (1) or absence (0) of bands for each primer. Primer banding characteristics such as the total number of bands, number of polymorphic bands and percentage of polymorphic bands were obtained. In order to analyze the suitability of SSR markers for a genetic profile evaluation, the performance of SSR markers used was measured by estimating the polymorphic information content (PIC), marker index (MI) and resolving power (Rp). The PIC which measures the informativeness of SSR markers was calculated for each SSR marker according to the formula:

PIC = 1 -
$$n\Sigma$$
 pi^2

Where.

n = Total number of alleles detected for a locus of a marker. pi = Frequency of the ith allele (Smith *et al.*, 1997).

Marker index (MI) is a statistical parameter used to estimate the total utility of the maker system. The MI was determined as the product of PIC value and EMR (Prevost and Wilkinson, 1999). The effective multiplex ratio (EMR) of a primer is calculated as the total number of polymorphic loci multiplied by the proportion of polymorphic loci per their total number. Resolving power (Rp) is a parameter used to characterize the ability of the primer/marker combination to detect the differences between a large number of genotypes and was calculated as,

$$Rp = \Sigma I_{b}$$

Where,

 I_b = Amplicon informativeness and calculated by the formula.

$$I_b = 1 - [2 \times (0.5 - p)]$$

Where,

p = Proportion of genotypes containing the band.

The binary data matrix was converted into a genetic similarity coefficient between pairs of accessions using the Jaccard's similarity coefficient by NTSYS-pc (Numerical taxonomy system, version 2.2 (Rohlf, 2005). The SIMQUAL Programme was used to calculate the Jaccard's similarity coefficient, a common estimator of genetic identity and was calculated as follows (Jaccard, 1908).

$$\mbox{Jaccard's coefficient} = \frac{\mbox{N}_{\mbox{\tiny AB}}}{\mbox{N}_{\mbox{\tiny AB}} + \mbox{N}_{\mbox{\tiny A}} + \mbox{N}_{\mbox{\tiny B}}}$$

Where.

 N_{AB} = Number of bands shared by samples.

 N_A and N_B = Amplified fragments in sample A and B respectively.

The matrix of Jaccard's similarity coefficients was subjected to the unweighted pair group method with arithmetic averages (UPGMA) to generate a dendrogram for cluster analysis which depicting the similarity and diversity among genotypes (Sokal and Michener, 1958; Sneath and Sokal, 1973).

RESULTS AND DISCUSSION

Characterization of genetic variation

Seventeen out of the twenty-five SSR primers used in the present investigation showed amplification in all the genotypes. A total of 102 alleles were detected in the 22 greengram genotypes (20 selected superior mutant cultures and their parents) using these seventeen SSR markers. The total number of alleles observed for each primer scored separately and percentage polymorphism calculated subsequently (Table 2). All the amplified bands were polymorphic in nature indicated that all SSR markers exhibited polymorphism. The polymorphism is due to the mutations in both the SSR regions and the flanking regions contributing to variation in allele size and number among different mutants. Gupta et al. (2013) had studied 30 SSR

markers in mungbean genotypes, out of which 19 (63%) markers exhibited polymorphism. In this study, the number of alleles per locus varied from four to nine (Fig 1), with a mean of six alleles per locus. Sangiri *et al.* (2007) reported a higher average alleles per locus (16.3 alleles) for mungbean whereas Singh *et al.* (2014) and Kaur *et al.* (2018) observed less number of average alleles per locus *i.e.* 3.62 and 1.50, respectively. Reddy *et al.* (2008) reported that accessions with the most distinct DNA profiles are likely to contain the greatest number of novel alleles.

Polymorphism information of genetic diversity

The PIC value of a marker depends on the number of alleles and their relative frequencies. In this investigation, the PIC value which is a measure of the allelic diversity ranged from 0.450 to 0.804 with a mean value of 0.6335 and the PIC values of 14 SSR primers were higher than the mean value. The MI values ranged between 2.250 and 7.029. The maximum MI was observed for the primer SSRP 36 and the minimum MI (2.250) was obtained with SSRP 48 primer. The EMR of different primer varied from 4 to 9 with a mean value of 6. The SSR markers exhibited high EMR and MI and were quite effective in resolving the polymorphism content in studied

Table 1: Details of the greengram genotypes used in this study.

Sr no.	Mutants	Mutagen	Parent	Significant changes in phenotypic characters in comparison to their parent varieties
1	SG1-1	Gamma-rays (20 kR)	Sujata	Early maturity, increase in plant height, pods/pl., pod length and 100-seed weight
2.	SG1-2	Gamma-rays (20 kR)	Sujata	Early maturity, increase in plant height, pod length and 100-seed weight
3.	SG3-3	Gamma-rays (60 kR)	Sujata	increase in plant height, pod length and seeds/pod
4.	SE1-2	EMS (0.2%)	Sujata	Increase in plant height, pods/plant, pod length, seeds/pod and 100-seed weight
5.	SE2-2	EMS (0.4%)	Sujata	Late flowering and increase in 100-seed weight
6.	SE2-3	EMS (0.4%)	Sujata	Late flowering, increase in plant height, pod length and 100-seed weight
7.	SE3-2	EMS (0.6%)	Sujata	Early maturity, increase in plant height, pods/pl., pod length, seeds/pod and 100-seed weight
8.	SN1-2	NG (0.005%)	Sujata	Late flowering, Increase in pods/plant and 100-seed weight
9.	SN3-3	NG (0.015%)	Sujata	Late flowering, Increase in pods/plant, pod length and 100-seed weight
10.	SM1-3	MH (0.01%)	Sujata	Late flowering, increase in pod per plant and 100-seed weight
11.	OG1-1	Gamma-rays (20 kR)	OBGG-52	Increase in pod/plant, pod length and seeds/pod
12.	OG3-2	Gamma-rays (60 kR)	OBGG-52	Increase in pod length and seeds/pod
13.	OG3-3	Gamma-rays (60 kR)	OBGG-52	Increase in pod/plant, pod length and seeds/pod
14.	OE1-2	EMS (0.2%)	OBGG-52	Increase in plant height and seeds/pod
15.	OE2-3	EMS (0.4%)	OBGG-52	Increase in seeds/pod
16.	ON3-1	NG(0.015%)	OBGG-52	Increase in plant height, pods/plant and seeds/pod
17.	ON3-2	NG(0.015%)	OBGG-52	Late flowering, increase in pod/plant, pod length and seeds/pod
18.	ON3-3	NG(0.015%)	OBGG-52	Increase in seeds/pod
19.	OM1-3	MH (0.01%)	OBGG-52	Late flowering and Increase in seeds/pod
20.	OGN2-3	Gamma-rays (40 kR) + NG (0.01%)	OBGG-52	Shorter in plant height and increase in seeds/pod
21.	Sujata	-	L24-2 × Pusa	-
			Baisakhi	
22.	OBGG	-	Mutant of K 851	-

٠.
s study.
Ë
.⊑
plification
au
showed
primers
SSR
₫
Details
~
ple

Prime Prime Sequence Prime Prime Sequence Prime Prime Prime Sequence Prime Prime Sequence Prime Prime Sequence Prime Sequence Prime Sequence Prime Segret Prime Sequence Prime Segret Segret Prime Segret Segret Prime Segret Seg	Primer sequences						
	CTTGCTTGCAGGATGAC	Range of ampl		No. of	Ċ	174	Ć
The Confidence of Confidence	F CTTGCTTGCGAGGATGAC 150-600	(dq ui)	bands	polymorphic bands	ב	IIM	д Д
R TCCAGTIGGACACATIGA 100-500 7 7 0676 11 F GCAGGACACACACACCACACACACACACACACACACACA	R TCCAGTGCAGCAAGTGAA 100-500	150-600	7	7	0.595	4.165	2.182
	B						
H	F CTTTGCCACACTCCTTGC	100-200	7	7	0.676	4.732	2.273
13 F AGATAGGGAGCTGCAAAACCTTAGC 100-800 5 5 5 5 5 5 5 5 5	1			1		!	
13 F AGATIAGGGAGCTGGTTGGTTGGT 100-900 6 6 0.783 R AGATIAGGGAGCTGGTTGGTTGGT 100-900 7 7 0.775 R AGGGGAAATGGAGGAGGTGGTTGGTTGGT 100-1500 7 7 0.775 R AGGGGGAAATGGAAATTGAAATT 100-1500 7 7 0.802 R TTCCTTCCACCACAGGGT 100-900 6 6 0.789 R TCCGCAGCACAGATGCA 100-900 6 6 0.789 R TCCGCAGCACAGATGC 100-900 6 6 0.789 R TCCCCAGAGGCCGTATTACAGTTACC 100-900 6 6 0.789 R CCCCAGAGGCCGTATTACAGTTACC 100-900 6 6 0.789 R CCCCAGAGGCCGTATTACAGTTACC 100-900 6 6 0.789 R CCCCAGAGGCCGTATTACAGTTACC 100-900 6 6 0.789 R TCCAGAGCACAGAATTACCGCAACAATTACCCAGAATTACCGCAACAATTACCCAGTTGGTTACATACCCATTACCTCCACAGA 100-300 7 7 0.884 R TCCAGAGCACAGAAATTACCCACAGAATTACCCAGAATTACCCAGAATTACCCAGAATTACCCAGTTGGTTACACAGAA 100-300 4 4 0.725 R CCCTACCCGTTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT	13		വ	ഹ	0.694	3.47	2.364
F AGTAMATICACCCGCACGATCG 100-500 7 7 0.775 F AGGCGAAAGCAACGATCG 100-500 7 7 0.775 F AGGCGCAACAACGATT 100-1500 7 7 0.802 F AGGCGCACCAACAACGATT 100-1500 7 7 0.802 F AGGCCCAACAACGATT 100-1500 6 6 0.804 F CGCGCAACAACGATTACCCAACAACTTACC 100-900 6 6 0.804 F CGCGCAACTACAACAATTTC 100-350 5 5 0.700 F CGCGCAACTACAACAATTTC 100-350 5 5 0.701 R CCCACACCAACTACCAACTTCCATCCAACAATTTC 100-300 9 9 0.781 R GTACTTCTTCCATCCAACAATT 550-2000 9 9 0.781 R CCCACCACCAATTCCAACAATT 100-300 4 4 0.725 R CCCACCACCAATTCCAACAATT 100-300 5 5 0.746 R CCCCACCACTTCCATCCAACAA 100-300 5 5 0.746 R CCCCACCACTTCCATCAACAA 100-300 5 5 0.450 R CCCCACCACTTCCATCAACAA 150-1250 5 0.450 R CCCCACCACTTCCATCAACAC 150-1250 5 0.450 R TCACCCTCCGTTCCATTCAACAC 150-1250 5 0.450 R TCACCACTCAATTCAACAC 150-1250 5 0.450 R TCACCACTTTTTTTTTTTTTCTTCAACAC 150-1250 5 0.450 R TGACCACTACAACACACAACACACACACACACACACACAC	R AGTAATCACCGGAGGATCA		Ç	Ç	0.783	4 698	2.091
F GGGGGAACGGGCAT 100-1500 7 7 0.775 R AGGGGAACGGACGAT 100-1500 7 7 0.775 R AGGGGAACGACGAT 100-1500 7 7 0.802 R TICCTTGCAACAACGACT 100-1500 5 5 0.700 R TICCTGCAACAACGACAT 100-1500 5 5 0.700 R TICCTGCAACAACGACAT 100-900 6 6 0.684 R TGGCCAGCAACAACTACATTGC 100-900 6 6 0.684 R CGGGGAACTACAATTGC 100-900 6 6 0.684 R CGGGGACTACAAATTGC 100-900 6 6 0.684 R GGGGTAGTTACCATGAATTG 100-300 9 9 0.781 R TGAAGCATGCAACAATTGATACAATT 100-300 9 9 0.781 R TGAAGCATCAACGACAACAATTGATACAATT 100-300 9 9 0.786 R TGCAAGGGACGCAACAACAATTGATACAATT 100-300 9 9 0.725 R CGCACGGTTGGTTGCAATA 100-300 9 9 0.725 R TGCACGCTTCAACGA 150-1250 5 0.689 R TGCACGGACACAACAACAACAATTGATTGAATTGAATTG	F GGGAGGAGGAGGAGGG 100-500)	Þ) } ;	2	- - - - -
R AGGGGAATGGAGGAGCAT 100-1500 7 7 0.802	R AGGGGAATGGACGAT 100-1500		7	7	0.775	5.425	2.182
17 F AGCGACGCAACAACGAT 100-1500 7 7 0.802 18 TITCTTGCAACAAAATACA 100-400 5 5 0.700 19 F TGGGCCAGCAACAGATGC 100-900 6 6 0.884 23 F CGGGAATTAACGGGTCACC 100-900 6 6 0.884 23 F CGGGAATTAACGGGTCACCC 100-900 6 6 0.884 25 F CGGGGTAGTGTATCACATTACACTTTACAC 100-300 9 9 0.781 25 F CGGGGTAGTGTACACATACATTACACTTACACACACACAC	17 F AGCGACGCAACAAT 100-1500	AT					
R TTCCTTGCAACAAAATACA 100-400 5 5 0.700	F GAGGACCAATAGAAATACA 100-400	100-1500	7	7	0.802	5.614	2.182
19 F GAGGACCCAATAGAAGTGAAAAT 100-400 5 5 0.700 28 R TCGGCGAATTAGCGAGTCACC 100-900 6 6 0.684 28 F GCGGGAATTAGCGCTATTACAC 100-350 5 5 0.804 25 F GCGGGAATTACCACGTATTACACATTTG 100-350 5 6 0.804 26 F GCGGGAATTACACAGAGTACTTACACACACACACACACAC	19 F GAGGACCCAATAGAAAT 100-400 R						
23 F CGGGCAGCAGCAGATGC 100-900 6 0.684 24 F CGGGGATGTACACC 100-900 6 0.684 25 CCGGGAGGCCGCTATTACACC 100-350 5 5 0.804 25 F GCGGTAGTGTACAAATGACAC 50-2000 9 9 0.781 36 F CAAGCCATGGAAGATTACACAC 200-400 5 5 0.781 38 F CAAGCCATGGAAGATGACACACACACACACACACACACAC	23 F CGGGAATTAACGGAGTCACC 100-900 24 F CGGGAATTAACGAGTCACC 100-900 25 F GCGGGTAGTGTATACAATTTG 100-350 26 GTACTGTTCCATGGAAGATCT 550-2000 36 F CAAGGCATGGAAGAATCT 550-2000 38 F AGCCCTTCGTGCTAGGAAAT 200-400 42 F TGATGGTTGGTTGGT 100-300 44 F TGACAAAGGGAAGAAA 200-400 44 F TGACAAAGGGAAGAAAA 200-400 46 F TGACAAAGGGAAGAAAAAAAAAAAAAAAAAAAAAAAAAA		2	5	00.700	3.50	2.273
23 F CGGGGAATTAACGGAGTCACC 100-900 6 6 0.684 8 CCCGAGAGGCGCTATTACAC 100-350 5 5 0.804 25 F GCGGGTAGTAACACATTTG 100-350 9 9 0.781 36 F CAGGGTAGTACACACACACACACACACACACACACACACA	23 F CGGGAATTAACGGAGTCACC 100-900 25 F CCCAGAGGCCGCTATTACAC 100-350 26 F GCGGGTAGTGTATACAATTG 100-350 36 F GTACTGTTCCATGGAAGATACAT 550-2000 38 F CAAGGCATGGAAGAAT 200-400 42 F TGGTTGGTTGGTTGGT 100-300 44 F TCACAAAGGGAGGAAGAGA 200-400 44 F TCACAAAGGGAGGAAGAGA 200-400 46 F TCACAAAGGGAGGAAGAGA 250-1000 46 F TCACAAAGGGAGGAAGAGA 250-1000 46 F TCACAAAGGAACCCTTCACAGC 250-1000 48 F TGACGGAGACACGAGACAGAGA 200-1500 8 F TGACGGAGACACGAGACAGAGAGAGAGAGAGAGAGAGAGA						
R CCCAGAGGGCGCTATTACAC 100-350 5 0.804 B GGGGTAGTTGTATACATTTG 100-350 5 0.804 B GTACTGTTCCAGGAAGAATTGTCACAC 9 9 0.781 38 F AGCCCTTGGAAAATGGTCACACA 4 4 0.769 42 F TGGAAGGAAGAAGAAA 200-400 5 5 0.769 42 F TGGTTGGTTGACAAAA 100-300 4 4 0.725 42 F TGGTGGTTGGTTGCAATA 200-400 5 5 0.746 44 F TGACAGGGGAAGGGAAGAGAA 200-400 5 5 0.746 44 F TGACAGGGGAGGAAGAGAA 200-400 5 5 0.746 44 F TGACAGGAGGAAGAGAAGAAAAAAAAAAAAAAAAAAAAA	25 F CCCAGAGGCCGCTATTACACTTTACACTTTACACTTTG 100-350 26 F GCGGGTAGTGTATACAATTTG 100-350 36 F CAAGGCATGGAAAGAATACACACACACACACACACACACA		9	9	0.684	4.104	2.273
25 F GCGGGTAGTGTATACANTTG 100-350 5 0.804 38 F CAAGGCATCGAAGATCT 550-2000 9 9 0.781 38 F TCGAAGCAACAAATGGTCACA 200-400 5 5 0.789 38 F AGCCTTCGTCGTACACAAATGGTCACAA 100-300 4 4 0.789 42 F TGATGGTTCACAAGA 100-300 4 4 0.725 44 F TGACGGTTGTTGCTCCAATA 100-300 5 5 0.746 44 F TCACAAAGGAGAGAGA 200-400 5 5 0.746 44 F TCACAAAGGAGAGAGAGA 250-1000 9 9 0.746 44 F TCACAAGGTTGGTTGGT 250-1000 9 9 0.653 46 F GATGACCCTTCAGATTGGTTGGTTGGTTGGTTGGTTGGTT	25 F GCGGGTAGTGTATACAATTTG 100-350 8 GTACTGTTCCATGGAAGATCT 550-2000 8 F CAAGGCATGGAAAGAAT 550-2000 38 F AGCCTTCGTGCTAGGAAAT 200-400 42 F TGGTTGGTTGGTTGGT 100-300 44 F TCACAAGGGAGGAAGAGA 200-400 5 CCCTACCGGTTGGTTGGA 200-400 6 CCCTACCGGTTGGTTGGA 100-300 7 CCCCAGGTTCGTTCACAGA 250-1000 8 CCCCAGGTTGGTTGGA 150-1250 8 TGACGGAGAGACAGAGAGAGAGAGAGAGAGAGAGAGAGAG						
R GTACTGTTCCATGGAAGATCT 560-2000 9 0.781 36 F CAAGGCATGGAAGAAGTAAGAT 560-2000 9 0.781 38 F TGGAAGCAACGAAGAAT 200-400 5 5 0.789 42 F TGGTTGGTTGGTTGGTTGGT 4 4 4 0.725 44 F TGCACAAGGAAGAGA 200-400 5 5 0.746 44 F TCACAAGGAGGAAGAGA 200-400 5 5 0.746 44 F TCACAAGGAGGAAGAGA 200-400 5 5 0.746 44 F TCACAAGGAGGAAGAGA 200-400 5 5 0.746 44 F TCACAAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	86 F GTACTGTTCCATGGAAGATCT 36 F CAAGGCATGGAAAGATAGAT 550-2000 38 F TCGAAGCAACAATGGTCACAC 200-400 38 F AGCCCTTCGTGCTGGTTGGT 200-400 42 F TGGTTGGTTGGTTGGATA 100-300 44 F TCACAAAGGGAGGAAGAG 200-400 46 F GATGAAGACCCTTCACAGC 250-1000 48 F TGACGGAGAGACAGAGACAGAG 150-1250 48 F TGACGGAGAGAGAGAGAGAGAG 150-1250 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA		5	5	0.804	4.02	1.728
36 F CAAGGCATGGAAAGAATAGAT 550-2000 9 9 0.781 38 F TCGAAGCAACAAATGGTCACAC 200-400 5 5 0.769 38 F AGCCCTTCGTGCTAGGAAT 200-400 5 5 0.769 42 F TGGTTGGTTGGTTCACAGA 100-300 4 4 0.725 42 F TGGTTGGTTGGTTGAATA 200-400 5 5 0.746 44 F TCACAAAGGGAGAGAGAGA 250-1000 9 9 0.630 46 F GATGAAGCCCTTCACAGG 250-1000 9 9 0.650 48 F TGACGGAGACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	36 F CAAGGCATGGAAAGATAAGAT 550-2000 88 F TCGAAGCAACAATGGTCACAC 200-400 38 F AGCCCTTCGTGCTAGGAAAT 200-400 42 F TGGTTGGTTGGTTCACAAGA 100-300 44 F TCACAAAGGAAGAGAA 200-400 46 F GATGAAGACCCTTCACAGC 250-1000 48 F TGACGGAGAGACAGAGA 150-1250 48 F TGACGGAGAGACAGAGAGAGAGAGAGAGAGAGAGAGAGAG	L					
R TCGAAGCAACAANTGGTCACAC 5 5 0.769 38 F AGCCTTCGTGCTAGGAAT 200-400 5 5 0.769 42 F TCGTACCGGTTGGTTGGTTGGTT 4 4 4 0.725 42 F TGGTTGGTTGGTTGCAATA 200-400 5 5 0.746 44 F TCACAAAGGAGAGAGAGA 200-400 5 5 0.746 44 F TCACAAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	8 TCGAAGCAAATGGTCACAC 38 F AGCCCTTCGTGCTAGGAAT 200-400 42 F TGGTTGGTTGGTTGGT 100-300 44 F TCACAAAGGAAGAGA 200-400 46 F TCACAAAGGAGGAAGAGA 250-1000 48 F TGACGAGAGACACAGAG 150-1250 48 F TGACGGAGAGACAGAGA 200-1500 50 F TGACGCAGAGAGACAGAG 150-1250 60 F TGACGCAGAGAGAGAGAG 150-1250 70 F GTAGCGCAGAGAGAGAGAG 150-1250 8 F TGACGCAGAGAGAGAGAG 150-1250 8 TGATTCCTTTTGTCTGAGTTAGAA 100-300 8 GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA		6	o	0.781	7.029	2.455
38 F AGCCCTTCGTGCTAGGAAAT 200-400 5 5 0.769 R CCCTACCGGTTGGTTGGT 100-300 4 4 4 0.725 R CCCTACCGGTTGGTTCACAGA 100-300 5 5 0.746 44 F TCACAAAGGGAGGAAGAGA 200-400 5 5 0.746 44 F TCACAAAGGGAGGAAGAGA 250-1000 9 9 0.630 46 F GATGAAGACCCTTCACAGC 250-1000 9 9 0.630 48 F TGACGGAGAGACAGAGA 150-1250 5 5 0.450 8 F TGACGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	38 F AGCCCTTCGTGCTAGGAAAT 200-400 R CCCTACCGGTTGGTTGGT 100-300 42 F TGGTTGGTTCACAAGA 100-300 44 F CACGGGTTCTGTCCCAATA 200-400 46 F TCACAAAGGAGAGAGAGA 250-1000 48 F TGACGGAGAGACAGAGACAGAGAGAGAGAGAGAGAGAGAG	AC					
R CCCTACCGGTTGGTTGGTT 4 4 0.725 42 F TGGTTGGTTGCAAAA 4 4 0.725 8 CACGGGTTCTGTCTCCAATA 200-400 5 5 0.746 44 F TCACAAAGGAAGAAA 200-400 5 5 0.746 44 F TCACAAAGGAAGAAGA 250-1000 9 9 0.630 46 F GATGAAGACCCTTCACAGC 250-1000 9 9 0.630 48 F TGACGCAGAGACAGAG 150-1250 5 5 0.450 48 F TGACGCAGAGAGAGAGAG 160-1250 5 5 0.659 50 F GTAGCCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	R CCCTACCGGTTGGTTGGT 42 F TGGTTGGTTCACAAGA 100-300 44 F CACGGGTTCTGTCTCCAATA 200-400 45 F TCACAAAGGGAGGAAGAGA 250-1000 46 F GATGAAGGCCTTCACAGC 250-1000 48 F TGACGGAGACAGAGACAGAG 150-1250 48 F TGCTTCCTTTTGTCTGAGTTAGAA 200-1500 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	200-400	2	ည	0.769	3.845	2.000
42 F TGGTTGGTTCACAAGA 100-300 4 4 0.725 R CACGGGTTCTGCTCCAATA 200-400 5 5 0.746 44 F TCACAAAGGGAGGAAGAGA 200-400 5 5 0.746 44 F TCACAAAGGGAGGAAGAGA 250-1000 9 9 0.630 46 F GATGAAGACCCTTCACAGC 250-1000 9 9 0.630 48 F GTCACCCTGGTTGGTTGG 150-1250 5 0.450 48 F TGACGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	42 F TGGTTGGTTCACAAGA 100-300 44 F CACGGGTTCTGTCTCCAATA 200-400 44 F TCACAAAGGGAGGAAGAG 200-400 46 F GATGAAGACCCTTCACAGC 250-1000 48 F TGACGGAGACAGAGACAGAG 150-1250 48 F TGCTTCCTTTTGTCTGAGTTAGAA 150-1250 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA						
R CACGGGTTCTGTCTCCAATA 200-400 5 5 0.746 44 F TCACAAAGGGAAGAGA 200-400 5 5 0.746 46 F GATGAAGACCCTTCACAGC 250-1000 9 9 0.630 48 F GATGACCCTGGATGGATGAGAGAGAGAGAGAGAGAGAGAG	R CACGGGTTCTGTCTCCAATA 44 F TCACAAAGGGAGGAAGAGA 200-400 200-400 46 F GATGAAGACCCCTTCACAGC 48 F TGACGGAGAGACAGAG 48 F TGCTTCCTTTTGTCTGAGTTAGAA 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA		4	4	0.725	2.90	2.000
44 F TCACAAAGGGAAGAGA 200-400 5 5 0.746 8 CCCCAGGTTGGTTGGA 250-1000 9 9 0.630 46 F GATGAAGACCCTTCACAGC 250-1000 9 9 0.630 48 F TGACGCAGAGACAGAG 150-1250 5 5 0.450 50 F GTAGCGCAGAGAGAGAGAGAG 200-1500 5 5 0.659 50 F GAAGAGCACATTCAGCTT 100-300 5 5 0.756 50 F GAGAGCAACGTATGACATT 100-300 5 5 0.756 50 F GAGAGCAACTTCATTCAGCTT 100-300 5 5 0.756 50 F GAGAGCAACGTATGACATTGTCCC 100-300 5 5 0.756 50 F GAGAGCAACGTATGACATTGTCCC 100-300 6 6 0.6335	44 F TCACAAAGGGAGGAAGAGA 200-400 R CCCCAGGTTGGTTGGA 250-1000 46 F GATGAAGACCCTTCACAGC 250-1000 48 F TGACGGAGAGACAGAG 150-1250 48 F TGCTTCCTTTTGCTGAGTTAGAA 150-1250 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA						
R CCCCAGGTTGGTTGGTTGGT 46 F GATGAAGACCCTTCACAGC 250-1000 9 9 0.630 48 F TGACGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	R CCCCAGGTTGGTTGGT 46 F GATGAAGACCCCTTCACAGC 250-1000 48 F TGACGGAGAGACAGAG 150-1250 48 F TGACGGAGAGAGAGAGAG 150-1250 50 F GTAGCGCAGAGAGAGAGAG 200-1500 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	_	5	2	0.746	3.73	2.091
46 F GATGAAGACCCCTTCACAGC 250-1000 9 9 0.630 48 F GTTCACCCTCGGTTGGTTGG 150-1250 5 5 0.450 48 F TGACGGAGACAGACAGACAGACAGACAGACAGACAGACAG	46 F GATGAAGACCCCTTCACAGC 250-1000 8 R GTTCACCCTCGGTTGGTTGG 150-1250 48 F TGACGGAGAGACAGAG 150-1250 50 F GTAGCGCAGAGAGAGAG 200-1500 50 F GTAGCGCAGAGAGAGAG 200-1500 50 F GAAACGGCTCATTCAGCTT 100-300 52 F GAGAGCAACGTAGAAAATG 100-300 C Total Mean	_					
R GTTCACCCTCGGTTGGTTGG 5 5 0.450 48 F TGACGGAGACAGACAGAG 150-1250 5 5 0.450 50 F TGCTTCCTTTTGTCTGAGTTAGAA 200-1500 5 5 0.659 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	R GTTCACCCTCGGTTGG 48 F TGACGGAGACAGAG 150-1250 R TGCTTCCTTTTGTCTGAGTTAGAA 200-1500 50 F GTAGCGCAGAGAGAGAGAG 200-1500 60 F GAAACGGCTCATTCAGCTT 100-300 62 F GAGAGCAACGTATGAAAATG 100-300 70 GTTCGTAGTTACATTGTCCC Total Mean Mean		6	თ	0.630	29.67	2.636
48 F TGACGGAGACAGAGCAGAGG 150-1250 5 5 0.450 R TGCTTCCTTTTGTCTGAGTTAGAA 200-1500 5 5 0.659 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	48 F TGACGGAGACAGAG 150-1250 R TGCTTCCTTTTGTCTGAGTTAGAA 200-1500 50 F GTAGCGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA						
R TGCTTCCTTTTGTCTGAGTTAGAA 200-1500 5 5 0.659 50 F GTAGCGCAGAGAGAGAG 200-1500 5 5 0.659 62 F GAAACGGCTCATTCAGCTT 100-300 5 5 0.756 52 F GAGAGCAACGTATGAAAATG 100-300 5 5 0.756 R GTTCGTAGTTACATTGTCCC 102 102 - Total Mean 6 6 0.6335	R TGCTTCCTTTTGTCTGAGTTAGAA 50 F GTAGCGCAGAGAGAGAGA R CAAAACGGCTCATTCAGCTT 52 F GAGACCAACGTTGAAAATG R GTTCGTAGTTACATTGTCCC Total Mean		2	2	0.450	2.25	2.000
50 F GTAGCGCAGAGAGAGA 200-1500 5 5 0.659 R CAAAACGCTCATTCAGCTT 100-300 5 5 0.756 52 F GAGAGCAACGTATGAAAATG 100-300 5 5 0.756 R GTTCGTAGTTACATTGTCCC 102 - - - Total Mean 6 6 0.6335	50 F GTAGCGCAGAGAGAGAG R CAAAACGGCTCATTCAGCTT 52 F GAGAGCAACGTATGAAAATG R GTTCGTAGTTACATTGTCCC Total Mean	IGAA					
R CAAAACGGCTCATTCAGCTT 100-300 5 5 0.756 F GAGAGCAACGTATGAAAATG 100-300 5 5 0.756 R GTTCGTAGTTACATTGTCCC 102 - 102 - Total 6 6 0.6335	R CAAACGGCTCATTCAGCTT F GAGAGCAACGTATGAAAATG R GTTCGTAGTTACATTGTCCC Total Mean		2	5	0.659	3.295	2.091
F GAGAGCAACGTATGAAAAATG 100-300 5 5 0.756 R GTTCGTAGTTACATTGTCCC 102 102 - Total 6 6 0.6335	F GAGAGCAACGTATGAAAAATG R GTTCGTAGTTACATTGTCCC Total Mean						
GTTCGTAGTTACATTGTCCC Total Mean 6 6 0.6335	GTTCGTAGTTACATTGTCCC Total Mean		2	5	0.756	3.78	2.000
102 102 - 6 6 0.6335							
6 6 0.6335			102	102	1	1	
			9	9	0.6335	4.249	2.165

genotypes and indicated their suitability for better analysis of genetic diversity in greengram. The estimates of Rp ranged from 1.728 to 2.636 with an average of 2.165 per primer. The highest Rp was recorded for the primer SSRP 46 (2.636)

Table 3: Grouping of mutant genotypes into different genetic clusters on the basis of polymorphic banding patterns.

Cluster	Number of	Name of the
no.	mutants	mutant genotypes
I	2	SG1-1, SE1-2
II	1	SG1-2
Ш	2	SN1-2, SN3-3
IV	2	SE 3-2, SM 1-3
V	2	SG3-3, SE2-2
VI	1	SUJATA
VII	1	SE2-3
VIII	1	OG1-1
IX	1	OM1-3
Χ	2	OGN2-3, OBGG-52
XI	5	OG3-2, OG3-3, OE2-3, ON3-1, ON3-3
XII	1	OE1-2
XIII	1	ON3-2

followed by SSRP 36 (2.455) and the lowest value was scored with the primer SSRP 25 (1.728).

Genetic relationship among genotypes

The dendrogram (Fig 2) constructed based on Jaccard's similarity coefficient and UPGMA with the SSR data from 102 polymorphic loci clearly formed two major groups at a 70% cut level of similarity, representing the parents Sujata and OBGG-52 along with their mutants. These two major groups divide into 13 clusters (Seven clusters belong to the Sujata group and the other six clusters belong to OBGG 52 group) at a 38% cut level of similarity. The Jaccard's similarity coefficient ranged from 0.07 to 0.70 with an average value of 0.38. Maximum five of mutant genotypes (OG3-2, OG3-3, OE2-3, ON3-1, ON3-3) included in cluster XI. The remaining 15 mutant cultures and their parent are distributed among the remaining 12 clusters (Table 3). Clusters I, III, IV, V and X individually consisted of two accessions and all other clusters consisted of single accessions. Seven mutant genotypes of Sujata (SG1-1, SG1-2, SE1-2, SE3-2, SN1-2, SN3-3, SM1-3) and eight mutant genotypes of OBGG-52 (OG1-1, OG3-2, OG3-3, OE1-2, OE2-3, ON3-1, ON3-2, ON3-3) were recorded maximum genetically diverse from their respective parent. Similar clustering through UPGMA

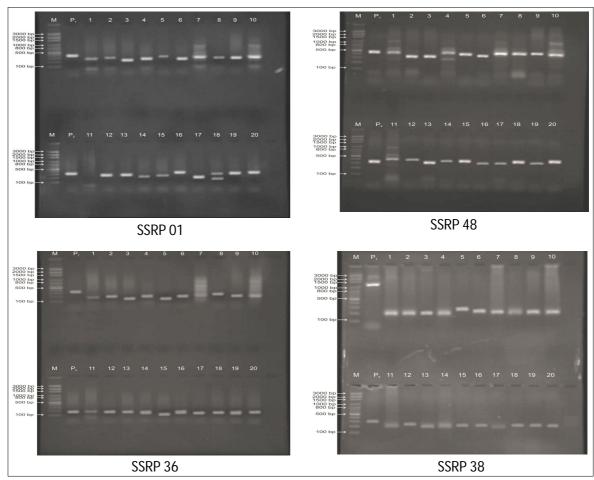


Fig 1: DNA polymorphism among greengram genotypes revealed by SSR primers.

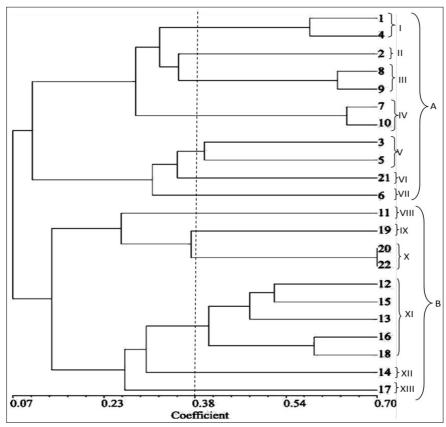


Fig 2: Dendrogram obtained by UPGMA analysis based on SSR marker data of 22 greengram genotypes.

analysis based on 19 polymorphic SSR markers grouped the 29 mungbean genotypes into three main clusters with the similarity coefficient ranged from 0.31 to 1.00 (Gupta et al., 2013). Reddy et al. (2008) reported those 30 greengram genotypes were grouped into five clusters with Jaccard's similarity coefficients ranged from 0.64 to 0.90. Similar polymorphism results have been reported by Singh et al. (2012) where they estimated the genetic diversity of the induced variation among 30 mutant lines and parent genotypes. Sherawat et al. (2014) studied thirty-eight novel microsatellite markers (SSRs) specific to candidate genes for detection of genetic variations in twenty-two greengram genotypes and reported the maximum similarity value of 0.56.

CONCLUSION

The present study revealed that SSR markers are very effective in detecting the genetic variation in greengram and could be well utilized to analyze the mutants at the DNA level. Each polymorphic SSR marker detected four to nine alleles with an average of six alleles per locus. On the basis of genetic diversity study through SSR markers, it could be concluded that genotypes are falling in same group existing possibility of many traits to be similar whereas the genotypes falling extremely apart from the cluster represents the possibility of a considerable degree of genetic variation and

discovering new traits in them which could be further useful in the selection of the suitable genotypes and SSR markers for future breeding programmes to improve yield and other desirable characters in greengram. The study also suggests that the genotypes with high genetic diversity can be exploited as parental lines in recombination breeding programmes to develop promising transgressive segregants.

Conflict of interest: None.

REFERENCES

Arumuganathan, K. and Earle, E.D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Report. 9(3): 208-218.

Chen, H.L., Qiao, L., Wang, L.X., Wang, S.H., Blair, M.W. and Cheng, X.Z. (2015). Assessment of genetic diversity and population structure of mungbean (*Vigna radiata*) germplasm using EST based and genomic SSR markers. Gene. 566: 175-183.

Doyle, J.J. and Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus. 12: 13-15.

Fuller, D.Q. and Harvey, E.L. (2006). The archaeobotany of Indian pulses: Identification, processing and evidence for cultivation. Environmental Archaeology. 11: 241-268.

Gupta, S.K., Bansal, R., Vaidya, U.J. and Gopalakrishna, T. (2013). Assessment of genetic diversity at molecular level in mungbean [Vigna radiata (L.) Wilczek]. Journal of Food Legumes. 26(3 and 4): 19-24.

- Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N. and Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides and health benefits. Nutrients. 11(6): 1238. doi: 10.3390/nu11061238.
- Jaccard, P. (1908). Nouvelles recherches Surla distribution florale. Bull. Soc. Sci. Nat. 44: 223-270.
- Kaur., G., Joshi A. and Jain D. (2018). SSR-Marker assisted evaluation of genetic diversity in mungbean [Vigna radiata (L.) Wilcezk] genotypes. Brazilian Archives of Biology and Technology. 61: 1-8.
- Kim, S.K., Nair, R.M., Lee, J. and Lee, S.H. (2015). Genomic resources in mungbean for future breeding programs. Frontiers in Plant Science. 6: 626. https://doi.org/10.3389/ fpls.2015.00626.
- Kuleung, C., Baenziger, P.S. and Dweikar, I. (2004). Transferability of SSR markers among wheat, rye and triticale. The Oretical and Applied Genetics. 108(6): 1147-1150.
- Liu, Y., Cheng, X.Z., Wang, L.X., Wang, S.H., Bai, P. and Wu, C.S. (2013). Genetic diversity research of mungbean germplasm resources by SSR markers in China. Scientia Agriculture Sinica. 46: 4197-4209.
- Powell, W., Morgante, M. andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding. 2: 225-238.
- Prevost, A. and Wilkinson, M.J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics. 98(1): 107-112.
- Reddy, K.S., Souframanien, J., Reddy, K.S. and Dhanasekar, P. (2008). Genetic diversity in mungbean as revealed by SSR and ISSR markers. Journal of Food Legumes. 21(1): 15-21.
- Rohlf, F. (2005). NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.2. Exeter software. NewYork, USA
- Sangiri, C., Kaga, A., Tomooka, N., Vaughan, D.A. and Srinives, P. (2007). Genetic diversity of the mungbean (*Vigna radiata* Leguminosae) genepool on the basis of microsatellite analysis. Australian Journal of Botany. 55: 837-847.

- Sehrawat, N., Bhat, K.V., Kaga, A., Tomooka, N., Yadav, M. and Jaiwal, P.K. (2014). Development of new gene-specific markers associated with salt tolerance for mungbean [Vigna radiata (L.) Wilczek]. Spanish Journal of Agricultural Research. 12(3): 732-741.
- Singh, A., Dikshit, H.K., Jain, N., Singh, D. and Yadav, R.N. (2014). Efficiency of SSR, ISSR and RAPD markers in molecular characterization of mungbean and other Vigna *species*. Indian Journal of Biotechnology. 13: 81-88.
- Singh, S.K., Lavanya, G.R., Bhat, K.V., Babu, G.S., Arya, L., Verma, M., Hussain, Z., Roy, S., Rathi, R.S. and Mishra, A.K. (2012). Microsatellite markers revealed genetic diversity in mungbean mutant lines. Indian Journal of Hill Farming. 25(1): 38-43.
- Smith, J.S.C., Chin, E.L., Shu, H., Smith, O.S., Wall, S.J., Senior, M.L., Mitchell, S.E., Kresovich, S. and Zeigle, J. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (*Z mays* L.): Comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics. 95: 163-173.
- Sneath, P.H.A. and Sokal, R.R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.F. Freeman and Co, San Francisco.573.
- Sokal, R. R. and Michener, C.D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin. 38: 1409-1438.
- Sudha, M. (2009). DNA isolation protocol for Vigna radiata with free of phenolics. Nature Protocols. 167. DOI: https:// doi.org/10.1038/nprot.2009.167.
- Vijayalakshmi, P.S., Amirthaveni, S., Devada, R.P., Weinberger, K., Tsou, S.C.S. and Shanmugasundaram, S. (2003). Enhanced Bioavailability of Iron from Mungbean and its Effects on Health of School Children in Technical Bulletin No. 30. AVRDC Publication. 03-559, [(ed.) Kalb, T.] (AVRDC-The World Vegetable Center). 5-26.
- Vishnu-Mittre, B. (1974). "Palaeobotanical Evidence in India," In: Evolutionary Studies in World Crops: Diversity and Change in the Indian Sub-continent, [(ed.) Hutchinson, J.] (Cambridge University Press). pp: 3-30.
- Zia, Z.U., Sadaqat, H.A., Tahir, M.H.N., Sadia, B., Bushman, B.S., Hole, D., Michaels, L. and Malik, W. (2014). Estimation of genetic diversity using SSR markers in sunflower. Russian Journal of Genetics. 50(5): 498-507.