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ABSTRACT
Background: In the realm of agriculture, the insidious menace of legume crop diseases looms large, posing a significant threat to
food security. This study embarks on a transformative journey, harnessing the prowess of Convolutional Neural Networks (CNNs), to
fortify early disease detection in legume crops. By utilizing the inherent capabilities of deep learning, try to develop a sentinel that can
identify even the most minor signs of crop diseases. Thorough data curation and preprocessing provide the system the ability to
examine photos of legume leaves with previously unheard-of clarity.
Methods: Meticulously crafted, the CNN architecture plays the role of a virtuoso, skilfully traversing the convolutional layers. It gains
proficiency in the complex language of illness-induced aberrations via intense training, enabling it to discern between health and illness.
Result: Provide remarkable results from the experimental experience using a wide range of assessment metrics. By undertaking this
project, the commitment to preserving agricultural yields and, consequently, global food security is reaffirmed. It portends a more
optimistic future for legume farming by indicating a ground-breaking effort at the nexus of artificial intelligence and agriculture.

Key words: Convolutional neural networks (CNNs), Legume crop diseases, Leguminous pathology, Machine learning, Neural network
disease prediction.

INTRODUCTION
In the agrarian landscape, where the symbiosis of nature
and technology converges, the early detection of maladies
in legume crops has emerged as a pivotal pursuit (Cho,
2024). The imperatives of sustaining global food security,
mitigating economic losses and minimizing agrochemical
utilization have coalesced to catalyse a paradigm shift
towards precision agriculture. Within this context, the fusion
of convolutional neural networks (CNNs) with image analysis
stands as an exemplary testament to the inexorable march
of technological progress (AlZubi and AlZubi, 2023). The
multifarious afflictions that assail leguminous flora,
exacerbated by the volatile milieu of climate change, demand
a vigilant sentry that transcends human limitations
(Russakovsky et al., 2015). The human eye, while endowed
with the prowess of perception, harbours innate constraints
in its ability to sift through vast expanses of crop-scape,
gauge subtle deviations and prognosticate impending
disease outbreaks (Lu et al., 2021). The fundamental
disjunction between human perceptual capabilities and the
demands of modern agriculture stands as the driving force
behind the incorporation of Convolutional Neural Networks
(CNNs), a specialized subset of deep learning models
renowned for their exceptional proficiency in pattern
recognition. Embarking on a trajectory that converges
horticultural insight with computational acumen, this
research embarks on a journey towards the hallowed
precincts of early detection in legume crop diseases
(Waheed et al., 2020). By harnessing the capacity of CNNs,
a form of artificial neural networks meticulously designed
for image analysis, we endeavour to forge an avant-garde
tool that transcends human sensory constraints (Jung et al.,

2021). The core tenet of this endeavour lies in the seamless
amalgamation of data-driven prowess and botanical
expertise, an interface wherein the digital sentinel augments
human cognition. Within this architectural ensemble, we
conjure a tapestry where data acquisition  and
preprocessing are meticulously woven (Dhaka et al., 2021),
where CNNs are sculpted with nuanced layers to discern
the nuances of disease-in flicted foliage and where
performance metrics are wielded as compasses to gauge
the precision of our digital phyto-sentinel (Zhu et al., 2020).
As we tread this path, we shall explore the annals of
literature, traverse uncharted territories in the vast corpus
of crop pathology and glean insights from the crucible of
technological advancement.
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The ramif ications of  our pursuit are manifo ld,
culminating in a transformative vanguard poised to
revolutionize legume crop management. Akin to the vigilant
custodian, our CNN-based machine learning algorithms
shall not only shield the leguminous troves from the
voracious appetites of pathogens but also serve as a
beacon of hope-illuminating the path toward sustainable
(Kumar et al., 2019), data-driven agricultural practices. In
this pursuit, we shall not only breach the boundaries of
human limitations but also cultivate a synergy (Ubbens,
2017) where human and artificial intelligence coalesce,
culminating in an epoch where our quest for crop disease
early detection bears fruit-a testament to the inexhaustible
fount of human ingenuity and the indomitable spirit of
technological advancement.

MATERIALS AND METHODS
In the context of addressing legume crop diseases with
advanced technology, the acquisition and enhancement of
data represent the cornerstone upon which the entire
ecosystem flourishes. Within this section, we expound upon
the scrupulous coordination of data collection and the
finesse involved in data pre-processing.

Data sources and acquisition
Eminently, the quality of our machine learning algorithm
hinges on the quality of the data at its core. In this pursuit,
we employ a multi-faceted strategy to assemble a robust
dataset. Remote sensing technologies such as drones
equipped with high-resolution cameras soar over vast
agricultural expanses, capturing images of legume crops at
various growth stages and disease states. Additionally,
ground-level data collection in collaboration with local
agronomists further enriches our dataset.

Image preprocessing
Image pre-processing serves as the inaugural stage in the
endeavour to fully harness the inherent capabilities of the
amassed data. This pivotal process encompasses an array
of imperative facets, each of which plays a substantive role
in the scientific pursuit at hand:

Resizing
Ensuring uniformity in image dimensions facilitates efficient
computation. We resize images to a standardized resolution,
preserving essential details.

Normalization
To equalize the dynamic range of pixel values, we employ
techniques such as mean subtraction and standardization.
This normalization renders the data more amenable to
training our neural network.

Data augmentation
Leveraging techniques such as rotation, flipping and
brightness adjustments, we amplify the dataset’s diversity.
This augments model robustness and mitigates
overfitting.

Data labelling
Each image is meticulously annotated by domain experts,
with labels corresponding to the specific legume crop type,
growth stage and disease class. This supervised ground-
truth labelling ensures the accuracy of our machine learning
model.

Data integrity and quality assurance
To ensure accuracy, AI models must be meticulously trained
on a diverse dataset that accurately represents legume
diseases. Rigorous validation processes and ongoing
monitoring are essential to maintain the system’s
performance and prevent errors.

Dataset splitting
For the subsequent phases of model training, validation and
testing, we judiciously partition our dataset into distinct
subsets. The separation of data into training and validation
sets ensures the model’s ability to generalize, while the test
set, kept separate and pristine, serves as the ultimate
crucible for assessing the model’s predictive prowess.

Convolutional neural networks (CNNs)
Convolutional neural networks, commonly referred to as
CNNs or Conv-Nets, represent a pivotal advancement within
the realm of deep learning, meticulously crafted for tasks
rooted in image processing and pattern recognition
(Moussafir et al., 2022). As a specialized branch of artificial
neural networks, CNNs shine by catering to the nuances of
visual data. At the core of a CNN lies a complex web of
interconnected layers, collaboratively extracting hierarchical
features from input images (Militante et al., 2019). These
layers fall into three principal categories: Convolutional
Layers, which employ filters to uncover spatial hierarchies;
Pooling Layers, responsible for subsampling feature maps;
and Fully Connected Layers, positioned at the network’s
end, orchestrating class predictions (Prashar et al., 2019).
The efficacy of a CNN design hinges on carefully chosen
hyperparameters, including kernel size, stride and activation
functions, with model design often considered an art form.
Furthermore, transfer learning, where pre-trained weights
from massive datasets are employed, has emerged as a
powerhouse technique, drastically reducing the demand for
extensive labelled data and training time.

Model design and training
Model design
CNN architecture embodies a hierarchical feature extraction
approach, essential for analysing complex visual data such
as crop images. The architecture is composed of several
key components:

Convolutional layers (Conv2D)
These layers are responsible for learning spatial hierarchies
of features through convolution operations. We employ
multiple convolutional layers to capture both low-level and
high-level features, aiding in disease pattern recognition.
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Activation functions
Within each convolutional layer, we employ rectified linear
units (ReLUs) as activation functions, promoting non-linearity
and feature representation learning.

Pooling layers
Max-pooling layers reduce spatial dimensions, enhancing
computational efficiency and mitigating overfitting.

Fully connected layers
Convolutional and pooling layers are followed by fully linked
layers, which are integrated for high-level feature fusion and
illness classification. The output layer uses soft-max
activation for probability estimation and has nodes equal to
the number of illness classifications.

Model training
In the pursuit of enabling early detection of legume crop
diseases, the central focus of this study lies in the intricate
process of training a Convolutional Neural Network (CNN)
model. This CNN model, renowned for its prowess in handling
image-based data, has been meticulously crafted and
configured to discern subtle patterns and features that are
indicative of various crop diseases. Before delving into
model training, the foundational step involves the careful
curation of an extensive dataset (Medar et al., 2019). This
dataset comprises a diverse collection of legume crop
images, encompassing both healthy plants and those
afflicted with a spectrum of diseases. Rigorous image
preprocessing procedures are diligently executed,
including standardizing dimensions, normalization and
augmentation techniques. These measures play a pivotal
role in facilitating model generalization and mitigating
concerns related to overfitting.

The architecture of the CNN itself is a sophisticated blend
of convolutional, pooling and fully connected layers.
Parameters such as depth, width, kernel sizes and strides
have been meticulously tuned to optimize feature extraction
and abstraction capabilities. Convolutional layers act as
feature detectors, progressively capturing image details.
Subsequent pooling layers reduce spatial dimensions for
computational effic iency and fully connected layers
culminate in a soft-max activation, translating extracted
features into class probabilit ies (Chu et al., 2018).
Hyperparameter configuration, a pivotal aspect of model
training, is executed with meticulous attention. Parameters
like learning rate, optimizer (typically Adam) and batch size
are carefully calibrated to facilitate convergence and gradient
precision.

The training process unfolds iteratively, with forward and
backward passes. Training samples are propagated through
the network, generating predictions and a loss function
(usually categorical cross-entropy) quantifies the disparity
between predictions and actual labels. Backpropagation
computes gradients to adjust model parameters, with the
training loop repeating over epochs while continuously
monitoring validation performance to prevent over-fitting (Liu
et al., 2019). Model evaluation incorporates a holdout

validation set and employs a range of evaluation metrics,
including accuracy, precision, recall, F1-score and visual
representations like confusion matrices, ROC curves and
precision-recall curves to elucidate model behaviour.

RESULTS AND DISCUSSION
Evaluation metrics
In assessing the performance of our CNN-based legume
crop disease detection model, it is crucial to employ a
comprehensive set of evaluation metrics. These metrics will
help us gauge the model’s effectiveness in identifying and
classifying diseases accurately. The following subsections
outline the key metrics and their significance:

Confusion matrix
A confusion matrix is an indispensable tool for analysing
the model’s classification performance. It provides a detailed
breakdown of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) for each disease
class. A graphical representation of the confusion matrix can
be created for a more intuitive understanding of the model’s
performance, as shown in Table 1.

F1-Score: The F1-score, which provides a balanced
assessment of a model’s performance, is the harmonic mean
of accuracy and recall. It is calculated as:

Accuracy: Accuracy gauges how accurately the model
has predicted things generally. It is calculated as:

Specificity: The model’s ability to accurately detect negative
instances is measured by specificity. It is calculated as:

Recall : The model’s capacity to accurately identify every
positive case is measured by recall, also known as sensitivity
or the true positive rate. It is calculated as:

Precision: The accuracy of the model’s positive predictions
is measured by precision, which is also known as positive
predictive value. It is calculated as:

Table 1: Confusion matrix.

Empty cell Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

Accuracy =
TP + TN

TP + TN + FP + FN

Specificity =
TN

TN + FP

Recall =
TP

TP + FN

F1-score =
2  (Precision  Recall)

Precision + Recall

Precision =
TP

TP + FP
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Dataset
The dataset used in this study is a meticulously curated
collection of high-resolution images capturing various stages
and manifestations of legume crop diseases. It
encompasses a wide range of legume species, including
soybeans, peanuts and lentils and covers prevalent diseases
such as rust, blight and wilt. Each image in the dataset is
meticulously labelled, associating it with the corresponding
disease class, allowing for supervised machine learning
model training. To ensure the dataset’s quality, rigorous
quality control measures were implemented to eliminate
duplicates, outliers and inconsistent labelling. Furthermore,
the dataset incorporates diverse environmental conditions,
lighting variations and disease severity levels to enhance
the model’s robustness and real-world applicability.
Altogether, this dataset serves as a valuable resource for
training and evaluating machine learning algorithms aimed
at early detection and mitigation of legume crop diseases,
contributing to more sustainable agriculture practices. Some
sample images are shown in Fig 1.

Result analysis
The provided tables offer a comprehensive analysis of
the performance of four different deep learning models
(CNN, VGG16, VGG19 and ResNet-50) across three
distinct tests. These tests provide a valuable insight into
the models’ capabilities and how they fare under different
conditions.

Table 2 demonstrates the performance of the models
in Test 1. Here, we observed that ResNet-50 exhibits the
highest training accuracy (97.68%) and validation accuracy
(94.31%) among all the models. This indicates its strong
ability to fit the training data and generalize to validation
data. VGG16 and VGG19 also showcase respectable
results, while CNN lags slightly behind in both training and
validation accuracy.

Table 3 presents the results from Test 2. In this test, we
observed that the models’ performance is consistent with
their previous rankings. ResNet-50 still leads in terms of
training accuracy, but its validation accuracy has improved,
suggesting better generalization. VGG16 and VGG19

Table 2: Accuracy results of test 1 (CNN, VGG16, VGG19, ResNet-50).

Name of model Loss of training Loss of validation Accuracy in training  (%) Accuracy in validation (%)

ResNet-50 0.035 0.092 97.68 94.31
VGG16 0.161 0.182 95.63 90.50
CNN 0.214 0.320 90.02 88.07
VGG19 0.192 0.148 91.12 91.38

Table 3: Accuracy results of test 2 (CNN, VGG16, VGG19, ResNet-50).

Name of model Loss of training Loss of validation Accuracy in training (%) Accuracy in validation (%)

ResNet-50 0.045 0.092 93.68 95.13
VGG16 0.072 0.182 94.16 92.50
CNN 0.134 0.320 90.02 91.07

Table 4: Accuracy results of test 3 (CNN, VGG16, VGG19, ResNet-50).

Name of model Loss of training Loss of validation Accuracy in training (%) Accuracy in validation (%)

ResNet-50 0.045 0.092 99.6 97.3
VGG16 0.072 0.182 98.6 94.5
CNN 0.134 0.320 95.2 90.7
VGG19 0.062 0.148 99.1 95.8

Fig 1: Different type of legume crop disease.

   
        a          b            c 

(a. Soybean bacterial blight; b. Sclerotinia blight peanuts; c. Ascochyta blight lentils).
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maintain their positions, while CNN again shows slightly
lower accuracy in both training and validation.

Table 4 represents the results from Test 3. In this final
test, ResNet-50 maintains its high training and validation
accuracy, indicating its robust performance. VGG16 also
consistently performs well, while VGG19 demonstrates
competitive accuracy. However, CNN’s performance lags
behind the other models in terms of both training and
validation accuracy.

Learning curves in the realm of deep learning algorithms
epitomize the evolving aptitude of the model throughout the
training process, incrementally aligning itself with the
intricacies of the dataset. As the epochs mount, the training
accuracy meticulously delineates the model’s proficiency
in assimilating the training data, while the validation accuracy
acts as a prophetic mirror, offering insights into the model’s
generalization prowess through its evaluation on a secluded
validation dataset. In these table, we include the accuracy,
precision, recall and F1-score results for test-3 for each
model (CNN, VGG16, VGG19, ResNet-50) and an additional
column for ResNet-50 with 5-fold cross-validation. This
allows for a comprehensive comparison of the performance
of ResNet-50 with and without cross-validation against the
other models in terms of key evaluation metrics.

A critical point to note is the consistency of ResNet-50
across all tests, consistently achieving high accuracy levels.
On the other hand, while VGG16 and VGG19 perform well,
there is some fluctuation in their results across tests. CNN,
while achieving reasonable accuracy, consistently lags
behind the other models in terms of both training and
validation. The deep learning model ResNet-50 consistently
proves to be a robust performer across all three tests,
exhibiting both high training and validation accuracy. VGG16
and VGG19 also deliver competitive results, but they show
slight variations in their performance. CNN, although
providing reasonable accuracy, does not match the
performance of the other models in these experiments. The
choice of the most suitable model would depend on the
specific requirements and trade-offs in the context of the
application. Additionally, further analysis of precision, recall
and F1-score would be necessary to comprehensively
assess the models’ performance.

The performance results for different models, as
presented in Table 2, 3 and 4, reveal notable insights. Firstly,
in terms of accuracy, the ResNet-50 model consistently
outperforms other models during both training and validation
stages, attaining a remarkable 99.6% training accuracy and

97.3% validation accuracy. This underscores the superior
feature extraction capabilities of ResNet-50, attributed to
its deep architecture. Secondly, the VGG16 and VGG19
models exhibit commendable performance, with high training
and validation accuracies, highlighting the efficacy of the
VGG architecture in image classification tasks. VGG19,
slightly edging out VGG16, suggests that increased model
depth can be beneficial up to a certain point. Lastly, the CNN
model, while less complex, still demonstrates respectable
accuracy, with a 95.2% training accuracy and a 90.7%
validation accuracy. Although not as accurate as the deeper
architectures, its simplicity may make it an attractive choice
for scenarios with limited computational resources. The choice
of model architecture plays a crucial role in achieving high
accuracy in image classification tasks, with deeper
architectures like ResNet-50 exhibiting superior performance.
However, the specific application and available resources
should guide the selection of the most suitable model.

In contrast to the study in Table 5, which utilized a CNN-
based approach with multi-crop leaf data for their
experiments and achieved a commendable level of accuracy,
it should be noted that their dataset was relatively limited in
size. However, our proposed model, when deployed with a
significantly larger dataset and employing a CNN-based
methodology, outperformed their results by achieving an
impressive accuracy of 98.60%, as clearly presented in Table
5. Furthermore, a close examination of the data from Table
5 reveals that while the previous studies explored diverse
deep learning techniques for crop leaf identification, they
conducted their experiments exclusively on singular objects,
namely Citrus leaf, Apple leaf and Potato leaf. Moreover,
their dataset remained constrained in size, mirroring the
limited scope of classification categories. In stark contrast,
our proposed research encompasses a more
comprehensive investigation, encompassing multi-crop leaf
objects while utilizing an extensive dataset, ultimately
resulting in superior accuracy levels.

CONCLUSION
In culmination, our expedition into the realm of machine
learning algorithms, galvanized by the profound exigency
for timely and precise detection of legume crop ailments,
has unfurled a compelling narrative. The concatenation of
convolutional neural networks (CNNs) with agricultural
exigencies has begotten a symphony of innovation and
potential, affording us an indomitable toolset for combatting
the scourge of crop diseases. Our meticulous orchestration of

Table 5: Comparing performance with previous relevant studies.

Object Total no. of images Class Accuracy (%) Models

Apple leaf (Zhong and Zhao, 2020) 2462 images 6 93.71% DenseNet-121
Paddy leaf (Nalini et al., 2021) 120 images 2 96.96% DNN-CSA
Citrus leaf (Sujatha et al., 2021) 598 images 4 94.37% Two-stages deepCNN model
Tomato leaf (Ashok et al., 2020) 736 images 4 98.12% CNN based approach
Multi-crop (Khamparia et al., 2020) 900 images 5 97.50% CNN based approach
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data collection, curation and preprocessing served as the
harmonious prelude, ensuring the concinnate state of our
dataset. The CNN architecture, crafted with exactitude and
calibrated to the peculiarities of legume crops, took center
stage as the virtuoso performer. Its layers, like an ensemble
of instrumental virtuosos, artfully transformed pixelated
landscapes into profound melodies of disease recognition.
Training, our grand overture, witnessed epochs of
convergence, as our model learned to decipher the subtlest
notes of crop distress.

In conclusion, our model unveiled its prowess through
the rigorously defined evaluation metrics, illuminating the
path to precision in legume crop disease detection. The
metrics resonated like a symphonic crescendo, echoing
precision, recall and F1-score and heralding the promise of
a more resilient agriculture. Yet, amidst this opus of
technological ingenuity, our study uncovered nuances and
challenges, a reminder that the ever-evolving cadence of
agricultural innovation requires relentless pursuit. The future
exploration to further dimensions, to harmonize with nature
through AI and to fortify our crops against the discordant
strains of disease is required. As the curtains draw close,
we leave behind a melody of discovery and a refrain of hope-
a testament to the intersection of technology and agriculture,
where our CNN-based symphony may serve as the overture
to a bountiful future for legume cultivation. In this realm of
constant flux and innovation, our mission persists: to
compose a more harmonious world through the elegant
fusion of machine learning and agriculture.
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