REVIEW ARTICLE Agricultural Reviews

Micronutrient and Metabolic Profiling of Strawberry Cultivars Grown in Subtropical Conditions: A Review

Komal Sharma¹, Anis Ahmad Mirza², Aarti³

10.18805/ag.R-2642

ABSTRACT

Strawberry is most economically important fresh and processed fruits, consumed both for its pleasant flavor and its nutrient content. Due to the fruit's high concentration of antioxidants and phytochemicals, eating strawberries has been linked to maintain good health and preventing the development of chronic diseases. The following information has been compiled from previous year research papers, which contain valuable insights into the health benefits, nutritional status and effects of strawberries. Balanced nutrition is needed by delicate strawberry plants so it's important to maintain the nutritional status for better growth, yield and quality of strawberry fruits. Although strawberries are a highly perishable fruit and cannot be kept for an extended amount of time, several wrapping techniques have preserved the fruit's quality when kept at ambient temperature. Disorder like albinism can be corrected with proper spacing and spray of borax and GA3. One step toward helping farmers maximize their profits is the notion of waste utilization in horticultural crops. Therefore, the goal of doubling farmer's income by minimizing their after-harvest losses and enhancing the demand of perishable cultivable fruit crops is achieved. This review paper showing different practices related to strawberry like its propagation, metabolites and health benefits, biochemistry of fruit ripening, effect of micro and macronutrients on strawberry's growth, yield and quality.

Key words: Growth, Health, Metabolites, Micronutrient, Strawberry.

Strawberry the Rosaceae family's fruit is one of the most attractive soft fruit of the world. It is an aggregate fruit 'achenes' and its edible part is fleshy thalamus. Runners used to propagate but nowadays tissue culture is also adopted. Optimum moisture and temperature conditions in upper layer of soil are essential for strawberry plant because these conditions affect growth and yield performance of the crop. Because the roots are shallow in nature, plants require regular watering in less quantity (Vishal et al., 2016). The plant thrives in all climates, whether they are typically temperate, subtropical plains, or even high-altitude tropical regions (Pramanick et al., 2019).

Strawberry is covering 1000 ha total area with production of 8000 MT in India (NHB, 2019-20). Here, Maharashtra is leading state in production of this fruits. It is grown in Uttarakhand, Uttar Pradesh, Himachal Pradesh, Madhya Pradesh, Maharashtra, Karnataka, Punjab and Haryana in India. This fruit is a good source of vitamin A (60 IU/100 g of edible portion) (Panigrahi et al., 2019), vitamin C (58.8 mg/100 g), carbohydrates (8.4 g), fats (0.5 g), protein (0.07 g) (Tarig et al., 2018; Hossain et al., (2016), minerals like potassium (164 mg), calcium (21 mg) and phosphorus (21mg) and other dietary. Strawberry has a delightful flavor and taste and is a great source of potassium, secondary metabolites, sugar and fibre (Farid et al., 2020). It contains relatively high amount of ellagic acid, quercetin, fisetin and ellagitannins (Giampieri et al., 2015). Additionally, strawberry fruit has been shown to be helpful in reducing inflammation, obesity- related problems, and the risk of developing a

¹Department of Horticulture, SAGR, Lovely Professional University, Phagwara-144 411, Punjab, India.

Corresponding Author: Anis Ahmad Mirza, Department of Horticulture, SAGR, Lovely Professional University, Phagwara-144 411, Punjab, India. Email: anis.19474@lpu.co.in

How to cite this article: Sharma, K., Mirza, A.A. and Aarti (2023). Micronutrient and Metabolic Profiling of Strawberry Cultivars Grown in Subtropical Conditions: A Review. Agricultural Reviews. DOI: 10.18805/ag.R-2642

Online: 20-12-2023

number of malignancies and heart ailments (Afrin et al., 2016). Strawberry fruit have great demand in fresh market or in the form of preserve as well as in processing industries. Strawberry is heavy feeder which requires micro and macronutrient for more production. For a better yield of high quality fruits, strawberries need more nutrients. Increasing growth, flowering, fruit yield and quality of strawberry plant by the use of micronutrients like copper sulphate, zinc sulphate etc. Deficiency of these micronutrients causes chlorosis in strawberry by Zn and stunted growth habit by deficiency of (Cu Zewail et al., 2020). The Zn treatment has a positive impact on several biological mechanisms by enhancing nutrient uptake and stabilizing phytohormone, antioxidant, and amino acid levels in plant parts (Leite et al., 2020). Zinc plays a significant role in many different enzymes, whether as metal elements in the catalysts themselves, or as a functional or controlling element

(Bairwa et al., 2022). During vegetative growth of strawberry, spray of Ca helps to delay ripening and mold development. It also helps in maintaining fruit persistency, enhancing vitamin C content, physiological disorder of apple. An increase in apoplastic Ca concentration is typically caused by calcium administration, which may change the structure and function of cell walls, membranes and fruit ripening (Kazemi et al., 2015). Major elements including nitrogen, potassium and phosphorus are crucial for strawberry growth, development and production. It is impossible to dispute the significance of secondary elements like iron, boron, zinc, copper, etc. because they acted as a catalyst to keep the growth and production going (Sabahat et al., 2021). Micronutrient foliar feeding has a significant impact on strawberry characteristics relating to plant growth, yield, factors influencing yield, and qualities. Foliar feeding of micronutrients boosts the usage efficiency of micronutrients by trying to minimize nutrient losses (Sangeeta et al., 2019). With the use of Zn and Fe, improvement in production and quality has been noted in a number of fruit crops (Shanker et al., 2019). Beside these nutrients, environment factor also impact the growth and development (Patil and Chetan, 2018).

Health benefits of strawberry fruits

Any form of strawberry consumption is linked with better lipid profiles, micro vascular function and platelet reactivity, among other indicators of cardiovascular health. Increased consumption of polyphenols has been linked to lowered CVD risk and decreased platelet reactivity. In addition to being a good source of dietary nitrate, strawberries are loaded in polyphenolic components such anthocyanin, flavanols, ellagic acid (EA) and ellagitannins (ET) are known to have beneficial effect on vascular system. Dietary nitrate can improve vascular health by converting to nitrite and nitric oxide, which can then cause ischemia and prevent platelet aggregation (Holt et al., 2020). The primary strawberry phytochemical bioavailability and metabolism, as well as how they work to fight a variety of diseases developed in human body (Afrin et al., 2016). Strawberry fermented beverages may have antioxidant, antibacterial and anti-bio film formation properties. This suggests that they may be good natural candidates for antioxidants, antibacterial and anti-bio film agents (Zhao et al., 2021).

Presence of secondary metabolites

Phenolic compounds, the most prevalent class of secondary metabolites, are found in strawberry fruits and have at least one aromatic organic ring in their chemical compositions. Coumarins, flavanoids, phenolic acid and tannin are comes under Phenolic compound (Delgado et al., 2019). Pelarogonidin 3-glucoside is major anthocyanin which has anti-inflammatory effect (Amini et al., 2017). Flavonoids including anthocyanins are secondary metabolites in which flavonoids protect plant from UV radiation while anthocyanins guard plant from blue and green light

(Landi et al., 2021; Agati et al., 2020). The two main flavonols found in farmed strawberries are one is quercetin and is other kaempferol (Labadie et al., 2020). Regarding the dietary effects of flavanols, they may enhance nitric oxide availability and vascular function as well as control metabolism and respiration (Al-Dashti et al., 2018).

Benefits of strawberry on corona virus (COVID-19) pandemic

The immune system is significantly modulated by the vitamins and minerals found in diets high in fruits and vegetables, particularly the vitamins A, C, D, E, and B complex as well as zinc and selenium (De Faria Coelho-Ravagnani *et al.*, 2021). Berries are one of those foods that have anti-inflammatory and antioxidant properties that help to maintain a robust immune system and lower the risk of corona virus infection. The immune system is improved by strawberries because they include antioxidants like vitamin C and bioactive chemicals found in plants. It is used to cure the flu and a cold. By defending cells, strawberries have the capacity to combat free radicals in the body (Batta, 2020).

Biochemistry of fruit ripening

Additionally, sucrose has been cited as a crucial indicator of strawberry fruit ripeness. It has been demonstrated that a variety of fruit transcriptional regulators control the ripening of strawberry fruit (Hossain et al., 2018). In strawberry, the flavonoid chain genes FaPAL, FaCHS, FaCHI and FaDFR appeared to be universally regulated by FaMYB1, 5 and 10. The FaSUT1 sucrose transporter gene plays a key role in the buildup of sucrose throughout fruit development (Zhao et al., 2017). They interact with other proteins like FabHLH to improve the manufacture of anthocyanin and to accelerate fruit ripening (Xu et al., 2017). A strawberry transcription element TCP family's role in strawberry fruit ripening was confirmed and FvTCP9 was discovered and isolated. Notably, strawberry fruit ripening was either hindered by temporary RNAi or accelerated by overexpression of FvTCP9. According to transcript analysis, ABA and anthocyanin are crucial components of this physiological process (Xie et al., 2020).

Propagation of strawberry

Now a day, strawberry is propagated with runners or with in vitro micro propagation in tissue culture. Among the different combinations of growth regulators for *in vitro* propagation of strawberry, nodal segments cultured on MS media supplemented with BA+ NAA+ adenine sulphate took less time for sprouting (92.59%) and also produced maximum shoot length due to the explants physiological state, genetic makeup and adequate auxin and cytokinin levels (Jhajhra *et al.*, 2018). The paper concluded the effect of temperature, GA3 and BA concentrations and photoperiod on strawberry runner induction and discovered that photoperiod length had greatest impact on runner induction

2 Agricultural Reviews

with 16 hours photoperiod, 25/15°C day and night temperature and 50 mg/L BA. Protein involved with photosynthesis and carbohydrate metabolism was generating for runner induction (Li et al., 2020).

Flower bud initiation in strawberry

In order to trigger floral initiation, innovative forcing approach required depriving nursery plants of nitrogen. To encourage an early floral start, the following artificially low temperature practices have been developed: short days with solar irradiance and low temperatures in cooling infrastructure; constant dark-low temperatures with refrigeration facilities, including industrial warehouses and intermittent low temperature storage (Yoshida et al., 2020). In this work, the stamen and axillary bud initiation deficits of the F. vesca ethyl methanesulfonate (EMS) induced loss of axillary meristems (lam) mutant. LAM is necessary for the beginning of axillary buds, which is necessary for the development of runners and branch crowns. The strawberry axillary bud initiation process has been shown to be regulated by the functionally characterized gene LAM. GA is more important for axillary buds destiny transition than for bud initiation (Feng et al., 2021). In the short-day variety "Benihoppe", over expression of FaHAN deferred blooming and encouraged the development of runners during reproductive growth (Liang et al., 2022).

Effect of controlled environment on strawberry growth

Strawberries are frequently grown in controlled environments with regulated lighting and temperature because the influence of open environment on strawberry (Samtani et al., 2019). Strawberry fruit output and quality are significantly influenced by artificial light's wavelength and intensity and compared to other light sources, blue light alone increases strawberry (*F. ananassa cv. Elsanta*) fruit yield by around 25% (Nadalini et al., 2017). In "Elan" but not in "Yotsuboshi" flower bud initiation after transplanting may be sped up by extending the photoperiod. In order to produce high-quality transplants, strawberry plugs might be grown under artificial illumination with a tailored photoperiod, albeit the success of this strategy seems to depend on the cultivar (Tsuruyama et al., 2018).

Plastic mulch effect on strawberry plant

Different color polythene mulches and spacing are important in strawberry production because they conserve moisture, manage weeds, regulate hydrothermal cycles and protect the delicate strawberries from direct soil contact (Das et al., 2022). Several types of mulches most importantly black polythene assisted in modifying the hydrothermal favorable soil conditions and soil management growing conditions for plants (Ngente et al., 2021). Black plastic mulch has warming properties and is primarily used for winter season strawberries growing in Florida. However, growers stretch planting dates to boost earliness, black plastic mulch might exacerbate heat stress during establishment (Daschamps et al., (2019). In

comparison to other coloured mulches, red and black color plastic mulches yielded more strawberries. The type of mulch had no impact on the vegetative growth of plants or the quality of the berries (Lalk *et al.*, 2020). Plastic mulch and low tunnel strawberry plant production gradually improved strawberry cv. festival's vegetative growth characteristics, fruit yield and its components and fruit quality parameter (Soliman *et al.*, 2015).

Role of strawberry in income generation

The goal of doubling farmer's income by minimizing their after-harvest losses and enhancing the demand of perishable cultivable fruit crops is achieved. Because it is a seasonal fruit and is nutrient-dense, it may be consumed outside of the growing season. It can also give rural farm women work and help farmers quadruple their income (Mehta *et al.*, 2019). Resource usage efficiency looks into each input's effectiveness and shows if it is being used too much or too little (Qamar *et al.*, 2017). Since the goal of every productive farm is to maximizing profit by reducing expense, it is crucial to assess the level of efficiency of the farmers when it comes to input utilization (Khatun *et al.*, (2019).

Packaging material for strawberry storage

Freshly picked fruits is packed in plastic punnets and wrapped in a variety of packaging materials, including cellophane paper, cling film, low-density polyethylene 25, 50 and 75μ and polypropylene 25μ . Modified atmospheric packaging using different films may be shown to be one of the best and most economical ways to have a longer lifespan with proper quality for a soft fruit like strawberries (Panda *et al.*, 2016). MSN (mesoporous silica nanoparticle) prepared films had a positive effect on fruit weight reduction and antioxidant activity, but they didn't seem to differ much in texture, pH, or citric and ascorbic acid levels from unwrapped samples. Based on these findings, PEC (pectin) based films made with MSN (mesoporous silica nanoparticle) and glycerol can be recommended as suitable options for increasing the life span of various fruits (AI-Asmar *et al.*, 2019).

Influence on physiological disorder of strawberry

The 5.5/7.0 ratio of K⁺/Ca²⁺ ratios remarkably accelerated or lowest the tip burn physiological disorder of Albion cultivar of strawberries in soilless and high amount of k can limit the availability of Ca and Mg and cause growing leaves and flowers to burn at the tips (Adak *et al.*, 2019). With excess application of nitrogen in the soil, low pH causes malformed fruits which are distorted and resemble a cat's face while fruits with albinism which are swollen and have white or pink spots on their surface and lower the yield by 20-25%. This disorder can be corrected with proper spacing and spray of borax and GA3 during Feb and Nov (Chaudhary *et al.*, 2022). *Trichoderma* like bio agents have many advantages, including the prevention and treatment of diseases as well as enhance the yield, improved nutrient absorption and improved crop quality (Marra *et al.*, 2019). It is possible to

suggest applying calcium and boron together to lower the prevalence of albinism, fruit deformity and grey mould in strawberries as well as to increase yield (Kumar et al., 2022).

Coating maintains strawberries quality during storage

Prior to storage, strawberries coated with chitosan (0.5%) may help to maintain the fruit's characteristics and strawberries coated with chitosan (0.1%) retain their biochemical characteristics. Chitosan fruit coating improved acceptance of strawberries by consumers under extended cold storage and a 0.5% chitosan coating, strawberry sweetness was preserved (Hassan et al., 2020). Because edible coating allows for less water vapour transfer, aloe vera gel (AV gel) addition can substantially reduce fungal decay, extending strawberries' life span up to 15 days of storage at the highest AV gel concentration (20%) while maintaining their physical and chemical properties, such as colour and hardness. Compound films produced from banana starch, chitosan and AV gel serves as examples (Pinzon et al., 2020). Strawberries' shelf life would be increased by Prosopis juliflora leaf Ethanolic extract coating (water soluble) while maintaining their storage quality standards and act against spoiling agents including B. cinerea (Saleh et al., 2022). The edible coating of calcium chloride and sodium alginate worked well to slow the rise of pH and soluble solid content while reducing metabolism and transpiration rates. Additionally, the coating stopped the growth of surface mould for up to 15 days and preserved the cut fruits' sensory attributes, such as colour and texture (Alharaty et al., 2020).

Micronutrient effect on strawberry

Effect of micronutrient on growth, flowering

The growth parameter of strawberry cv. Winter Dawn at 60 DAP showed notable increase by different micronutrient application at all growth stages (Saha et~al., 2019). Combined treatment spray of FeSo $_4$ and ZnSo $_4$ increases vegetative growth in strawberry cv. Chandler due to chlorophyll synthesis and electron transfer in oxidation (Singh et~al., 2015). Effect of micronutrients with treatment ZnSO $_4$ + H $_3$ BO $_4$ + FeSO $_4$ @ 0.4% shows minimum days after transplanting to first flower (64.30 days) and no. of flower per plant also increased in strawberry cv. Chandler (Verma et~al., 2018). Earliest flowering, maximum no. of flower/plant increased with the application of GA $_3$ 75 ppm+ ZnSO $_4$ 0.4%+ Boric acid 0.4% in cv. Chandler (Bairwa et~al., 2022).

Effect of micronutrient on fruit quality, yield

Before harvesting, the application of micronutrients like zinc sulphate, Boron and iron sulphate helps in enhancing the quality of strawberry fruits. Foliar application of Zn, Fe and B treatment at three time interval *i.e.* 30 DAT, 60 DAT and 90 DAT increases quality characters of strawberry fruit (Sudha *et al.*, 2018). TSS: acid ratio, total sugar and reducing sugar, ascorbic acid and anthocyanin content increased with the application of ZnSO₄ and minimum acidity is recorded

with this treatment (Saha et al., 2019). Average fruit weight of strawberry is improved by the foliar application of Zn Parmar et al. (2021). Combination of micronutrients like ZnSO₄ + H3BO₄ + FeSO₄@ 0.4% increase fruit per plant. This may be done by increase leaves chlorophyll content, translocation of metabolites, photosynthetic efficiency (Verma et al., 2018). Strawberry plant treated with RDF + ZnSO4 @ 0.6% significantly increase the yield 1.17kg/plant. This treatment significantly influenced yield and yield attributes parameters of strawberry (Chandrakar et al., 2019). Improvement of yield characters might be a result of the additional positive effects of Fe on yield. It is possible that plants getting Zn + Fe created more photo synthates and translocated to the growing fruits (Parmar et al., 2021). 0.4% Zn foliar spray performs best in term of growth and yield in strawberry plants (Mishra et al., 2016). Growth and yield of strawberry is increased with the application of ZnSO, 150 mg/l (Kazemi et al., 2015). Growth regulators and micronutrient have a great potential which influence the vegetative growth and yield of strawberry (Yadav et al., 2017). 99 mg/l Zn application enhanced growth, yield in strawberry cultivation and increase Zn concentration in fruits (Bhatti et al., 2021). Boron deficiency worsens fruit quality by raising titratable acidity, but its application enhances fruit quality (Haider et al., 2019).

Macronutrient effect on growth, yield and flowering

Early blooming, vegetative growth and other reproductive, vegetative and qualitative characteristics of the strawberry plant were all significantly influenced by potassium (ljaz et al., 2016). All growth characters like maximum plant height with 120% dose of P per plant and maximum plant spread, number of leaves per plant and minimum no. of days taken to first initiation of flower observed with RDP 100%, but with increased P rates (120%), these growth characters decreased (Reddy et al., 2021). The continual application of water soluble phosphatic fertilizer together with the prescribed doses of nitrogen and potassium may have contributed to these findings by enhancing nutritional absorption in strawberry fruits (Ahmad et al., 2018; Singh et al., 2019).

CONCLUSION

In addition to providing critical nutrients and dietary advantages including essential vitamins and minerals, strawberries are also a substantial source of phytochemical that is good for human health. Because strawberries are a "functional food," their anti-oxidant, anti-diabetic, anti-hypertensive, anti-carcinogenic and anti-hyperglycemic qualities give customers additional health advantages. Treating strawberries with edible coating increase the life span at ambient temperature, reduce the decay of fruits and act against many spoiling agents. Different macro and micronutrient and plastic mulch plays crucial role in growth, yield and quality of this fruit plant. Black polyethylene mulch improved soil moisture regime and significantly decreased irrigation and weed development. It also concluded that the

4 Agricultural Reviews

main building blocks for all biochemical and metabolic activities are called macronutrients and micronutrients are crucial for plant growth from seed to fruit set, berry size, crop physiology, generation of amino acids and more effective absorption of macronutrients. Physiological disorders can also be improved with Ca and B application.

Conflict of interest: None.

REFERENCES

- Adak, N. (2019). Effect of different K⁺/Ca²⁺ Ratios on yield, quality and physiological disorder in soilless strawberry cultivation. Acta Sci. Pol. Hortorum Cultus. 18(2): 229-236.
- Afrin, S., Gasparrini, M., Forbes-Hernandez, T.Y., Reboredo-Rodriguez, P., Mezzetti, B., Varela-López, A., Giampieri, F. and Battino, M. (2016). Promising health benefits of the strawberry: A focus on clinical studies. Journal of Agricultural and Food Chemistry. 64(22): 4435-4449.
- Agati, G., Brunetti, C., Fini, A., Gori, A., Guidi, L., Landi, M. and Tattini, M. (2020). Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants. 9(11): 1098.
- Ahmed, R., Karim, M.R., Quddus, M.A., Ahmed, S. and Siddiky, M.A. (2018). Response of strawberry to NPKS on yield in terrace soil. Bangladesh. Journal of Agricultural Research. 43: 89-97.
- Al-Asmar, A., Giosafatto, C.V.L., Sabbah, M., Sanchez, A., Villalonga Santana, R. and Mariniello, L. (2019). Effect of mesoporous silica nanoparticles on the physicochemical properties of pectin packaging material for strawberry wrapping. Nanomaterials. 10(1): 52.
- Al-Dashti, Y.A., Holt, R.R., Stebbins, C.L., Keen, C.L. and Hackman, R.M. (2018). Dietary flavanols: A review of select effects on vascular function, blood pressure and exercise performance. Journal of the American College of Nutrition. 37(7): 553-567.
- Alharaty, G. and Ramaswamy, H.S. (2020). The effect of sodium alginate-calcium chloride coating on the quality parameters and shelf life of strawberry cut fruits. Journal of Composites Science. 4(3): 123.
- Amini, A.M., Muzs, K., Spencer, J.P. and Yaqoob, P. (2017). Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutrition Research. 46: 88-95.
- Bairwa, M., Khushbu, N.S. and Kumar, U.J. (2022). Effect of plant growth regulators and micronutrients on flowering and fruiting of strawberry (*Fragaria* × *ananassa* Dutch.) cv. chandler. The Pharma Innovation Journal. 11(2): 1289-1292.
- Bhatta, A. (2020). Choice of food: A preventive measure during Covid-19 outbreak. Europasian Journal of Medical Sciences. 2(1): 88-92.
- Bhatti, S.M., Panhwar, M.A., Bughio, Z.R., Sarki, M.S., Gandahi, A.W. and Wahocho, N.A. (2021). Influence of foliar application of zinc on growth, yield and zinc concentration in strawberry. Pakistan Journal of Agricultural Research. 34(2): 486-493.

- Chandrakar, S., Singh, P., Panigrahi, H.K. and Kumar, P.A. (2019).

 Response of foliar application of micro-nutrients on number of flowers, fruits and yield per plant of strawberry (*Fragaria x ananassa* Duch.) cv. Nabila under net tunnel condition. The Journal of Pharmaceutical Innovation. 8(4): 531-533.
- Chaudhary, P.S., Raghuwanshi, J.S. and Kumawat, S.K. (2022).

 A potential source to generate farmer income: Strawberry cultivation in Rajasthan. A Monthly Peer Reviewed Magazine for Agriculture and Allied Sciences. 29.
- Das, K., Das, B., Paul, K. and Alam, M.B. (2022). Mulching and spacing affects growth, yield and fruit quality of strawberry (Fragaria × Ananassa duch.) under terai zone of West Bengal. Scientists joined as life member of society of krishi Vigyan. 237.
- de Faria Coelho-Ravagnani, C., Corgosinho, F.C., Sanches, F.L.F.Z., Prado, C.M.M., Laviano, A. and Mota, J.F. (2021). Dietary recommendations during the COVID-19 pandemic. Nutrition Reviews. 79(4): 382-393.
- Delgado, A.M., Issaoui, M. and Chammem, N. (2019). Analysis of main and healthy phenolic compounds in foods. Journal of AOAC International. 102(5): 1356-1364.
- Deschamps, S.S. and Agehara, S. (2019). Metalized-striped plastic mulch reduces root-zone temperatures during establishment and increases early-season yields of annual winter strawberry. Horticulture Science. 54(1): 110-116.
- Farid, M.Z., Qureshi, K.M., Shah, S.H., Qureshi, A. A., Umair, M. and Shafiq, H. (2020). Foliar application of micronutrients improves growth, productivity and fruit quality of strawberry (*Fragaria ananassa* Duch). JAPS: Journal of Animal and Plant Sciences. 30(4): 905-912.
- Feng, J., Cheng, L., Zhu, Z., Yu, F., Dai, C., Liu, Z. and Kang, C. (2021). GRAS transcription factor loss of axillary meristems is essential for stamen and runner formation in wild strawberry. Plant Physiology. 186(4): 1970-1984.
- Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S. and Battino, M. (2015). Strawberry as a health promoter: An evidence based review. Food and Function. 6(5): 1386-1398.
- Haider, Z., Ahmad, N., Danish, S., Iqbal, J., Ali, M.A. and Chaudhry, U.K. 2019. Effect of foliar application of boric acid on fruit quality and yield traits of mango. Advance Horticulture Science. 33(4): 457-465.
- Hassan, J., Anwar, R., Khan, A. S., Ahmad, S., Malik, A. U., Nafees, M. and Inam-ur-Raheem, M. (2020). Chitosan-based edible coating delays fungal decay and maintains quality of strawberries during storage. International Journal Agriculture Biology. 24: 486-492.
- Holt, R.R., Zuelch, M.L., Charoenwoodhipong, P., Al-Dashti, Y.A., Hackman, R.M. and Keen, C.L. (2020). Effects of short-term consumption of strawberry powder on select parameters of vascular health in adolescent males. Food and Function. 11(1): 32-44.
- Hossain, A., Begum, P., Zannat, M.S., Rahman, M.H., Ahsan, M. and Islam, S.N. (2016). Nutrient composition of strawberry genotypes cultivated in a horticulture farm. Food Chemistry. 199: 648-652.

- Hossain, M.R., Kim, H.T., Shanmugam, A., Nath, U.K., Goswami, G., Song, J.Y. and Nou, I.S. (2018). Expression profiling of regulatory and biosynthetic genes in contrastingly anthocyanin rich strawberry (*Fragariax ananassa*) cultivars reveals key genetic determinants of fruit color. International Journal of Molecular Sciences. 19(3): 656.
- Ijaz, F., Sohail, A.A. and Khan, R. (2016). The effect of Potassium on growth and yield of strawberry (*Fragaria ananassa* (Duchesne ex Weston) Duchesne ex Rozier). Pak. Journal of Botany. 48(4): 1407-1413.
- Jhajhra, S., Dashora, L.K., Singh, J., Bhatnagar, P., Kumar, A. and Arya, C.K. (2018). *In-vitro* propagation of Strawberry (*Fragaria* × *ananassa* Duch.). International Journal of Current Microbiology and Applied Sciences. 7(10): 3030-3035
- Kazemi, M. (2015). Effect of iron (Fe EDDHA), calcium chloride and zinc sulphate on vegetative growth, yield and fruit quality of strawberry. Jordan Journal of Agriculture Science. 11(3): 669-676.
- Khatun, M., Rashid, M.A., Khandoker, S., Kundu, N.D. and Matin, M.A. (2019). Resource use efficiency analysis in strawberry production in selected areas of Bangladesh. SAARC Journal of Agriculture. 17(1): 189-200.
- Labadie, M., Vallin, G., Petit, A., Ring, L., Hoffmann, T., Gaston, A. and Denoyes, B. (2020). Metabolite quantitative trait loci for flavonoids provide new insights into the genetic architecture of strawberry (*Fragaria* × *ananassa*) fruit quality. Journal of Agricultural and Food Chemistry. 68(25): 6927-6939.
- Lalk, G.T., Bi, G., Zhang, Q., Harkess, R.L. and Li, T. (2020). Hightunnel production of strawberries using black and red plastic mulches. Horticulturae. 6(4): 73.
- Landi, M., Agati, G., Fini, A., Guidi, L., Sebastiani, F. and Tattini, M. (2021). Unveiling the shade nature of cyanic leaves: A view from the "blue absorbing side" of anthocyanins. Plant, Cell and Environment. 44(4): 1119-1129.
- Leite, C.M., A. da Silva, F.R. Cesar, G.G. Guimaraes, Almeida, E. and Muraoka, T. (2020). Low efficiency of Zn uptake and translocation in plants provide poor micronutrient enrichment in rice and soybean grains. Journal of Plant Nutrition. 43(1):79-91.
- Li, Y., Hu, J., Wei, H. and Jeong, B.R. (2020). A long-day photoperiod and 6-benzyladenine promote runner formation through up regulation of soluble sugar content in strawberry. International Journal of Molecular Sciences. 21(14): 4917.
- Liang, J., Wu, Z., Xu, T., Li, X., Jiang, F. and Wang, H. (2022). Overexpression of HANABA TARANU in cultivated strawberry delays flowering and leads to defective flower and fruit development. Plant Science. 111-307.
- Marra, R., Lombardi, N., d'Errico, G., Troisi, J., Scala, G., Vinale, F. and Lorito, M. (2019). Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content. Journal of Agricultural and Food Chemistry. 67(7): 1814-1822.
- Mehta, S., Singh, R., Nityanand, N., Singh, A.K., Sohane, R.K., Singh, R.N., and Kumar, P. (2019). Value addition of discarded strawberry fruits: A potential to generate income for the farmers: Value addition of discarded strawberry fruits. A potential to generate income for the farmers. Journal of AgriSearch. 6(Special): 68-70.

- Mishra, A.K., Kumar, S. Verma, S. Dubey and A.K. Dubey. (2016). Effect of zinc sulphate, boric acid and iron sulphate on vegetative growth, yield and quality of strawberry (*Fragaria × ananassa* Duch) cv. Chandler. International Journal of Life Science. 11: 2222-2225.
- Nadalini, S., Zucchi, P., and Andreotti, C. (2017). Effects of blue and red LED lights on soilless cultivated strawberry growth performances and fruit quality. Eur. J. Horticulture Science. 82(1): 12-20.
- Ngente, V., Khawlhring, C. and Vanlalngurzauva, T. (2021). Utilization of different mulch materials on strawberry (*Fragaria x Ananassa* Dutch.) cultivation under open condition in Mizoram. Scientists joined as life member of society of krishi Vigyan. 245.
- NHB, (2019-2020). National Horticulture Board, Ministry of Agriculture and Farmers Welfare, Govt. of India. https://nhb.gov.in/StatisticsViewer.aspx?enc=MWoUJibk35dW2g36TUJWAoZqESmAYFi7h2irlsmjIINTcFl1rG/kLbq8ZQbWUvuM
- Panda, A.K., Goyal, R.K., Godara, A.K. and Sharma, V.K. (2016). Effect of packaging materials on the shelf-life of strawberry cv. Sweet Charlie under room temperature storage. Journal of Applied and Natural Science. 8(3): 1290-1294.
- Panigrahi, H.K., Lodhi, Y. and Saha, M. (2019). Growth, yield and quality improvement in strawberry through foliar application of calcium, iron and zinc: A review. Journal of Pharmacognosy and Phytochemistry. 8(6): 734-737.
- Parmar, B., Tandel, B., Chakraborty, B., Sarkar, M.,and Rathod, S. (2021). Foliar application of micronutrients enhances growth, yield and quality of strawberry (*Fragaria x ananassa* Duch.). Annals of Plant and Soil Research. 23(3): 286-290.
- Patil, B. and Chetan, H.T. (2018). Foliar fertilization of nutrients. Marumegh. 3(1): 49-53.
- Pinzon, M.I., Sanchez, L.T., Garcia, O.R., Gutierrez, R., Luna, J.C. and Villa, C.C. (2020). Increasing shelf life of strawberries (*Fragaria* ssp) by using a banana starch chitosan Aloevera gel composite edible coating. International Journal of Food Science and Technology. 55(1): 92-98.
- Pramanick, K.K., Shukla, A.K., Santosh, W., Jeetender, K. and Dipak, N. (2019). Strawberry cultivation is a profitable proposition in the hills. International Journal of Tropical Agriculture. 37(2): 119-126.
- Qamar, A., Ashfaq, M. and Khan, M. T.I. (2017). Resource use efficiency and return to scale analysis in off-season cucumber production in Punjab, Pakistan. Sarhad Journal of Agriculture. 33(1): 47-52.
- Reddy, G.C., Goyal, R.K. and Godara, A.K. (2021). Effect of phosphorous in combination with biofertilizers on growth, yield and quality of strawberry cv. Winter Dawn. Journal of Environmental Biology. 42(3): 727-734.
- Sabahat, S., Abbasi, J., Ahmad, M., Mumtaz, S., Khan, T.N., Tariq, S. and Imran, M. (2021). Role of micronutrients in improving fruit quality and yield of srawberry cv. chandler under microclimatic conditions. Pakistan Journal of Agricultural Research. 34(4): 897-904.
- Saha, T., Ghosh, B., Debnath, S. and Bhattacharjee, A. (2019). Effect of micronutrients on growth, yield and quality of strawberry (*Fragaria* × *ananassa* Duch.) cv. Winter Dawn in the Gangetic Alluvial Region of West Bengal. Journal of Crop and Weed. 15(1): 92-95.

6 Agricultural Reviews

- Saleh, I. and Abu-Dieyeh, M. (2022). Novel Prosopis juliflora leaf ethanolic extract coating for extending postharvest shelflife of strawberries. Food Control. 133: 108641.
- Samtani, J.B., Rom, C.R., Friedrich, H., Fennimore, S.A., Finn, C.E., Petran, A. and Bergefurd, B. (2019). The status and future of the strawberry industry in the United States. Horticulture Technology. 29(1): 11-24.
- Sangeeta, H., Panigrahi, K., Lodhi, Y. and Saha, M. (2019). Growth, yield and quality improvement in strawberry through foliar application of calcium, iron and zinc: A review. J. Pharmacognosy and Phytochemistry. 8: 734-737.
- Shanker, K., Misra, S., Topwal, M. and Singh, V.K. (2019). A research review on use of micronutrient in fruit crops. International Journal of Current Microbiology and Applied Sciences. 8(8): 3014-3025.
- Singh, M., Jamwal, M., Sharma, N., Kumar, R. and Wali, V.K. (2015). Response of iron and zinc on vegetative and reproductive growth of strawberry (*Fragariax Ananassa* Duch.) cv. Chandler. Bangladesh Journal of Botany. 44(2): 337-340.
- Singh, S., Singh, N.P., Sharda, R. and Sangwan, A.K. (2019).

 Response of irrigation, fertigation and mulching on plant growth and fruit yield of strawberry. The Horticultural Society of India (Regd.). 76(2): 233-240.
- Soliman, M.A., El-Aal, A., Hala, A., Mohmed, R. and Elhefnawy, N.N. (2015). Growth, fruit yield and quality of three strawberry cultivars as affected by mulch type and low tunnel. Alexandria Science Exchange Journal. 36: 402-414.
- Sudha, G., Saravanan, S. and Bose, B.S.C. (2018). Effect of micronutrients on quality and shelf-life of strawberry (*Fragaria* × *ananassa* Duch.) cv. chandler. Journal of Pharmacognosy and Phytochemistry. 7(6): 2239-2241.
- Tariq, M., Hussain, M.K., Malik, Z.K. and Jehan, N. (2018). An estimation of technical efficiency of strawberry production in district Charsadda Khyber Pakhtunkhwa. Sarhad Journal of Agriculture. 34(1).
- Tsuruyama, J. and Shibuya, T. (2018). Growth and flowering responses of seed-propagated strawberry seedlings to different photoperiods in controlled environment chambers. HortTechnology. 28(4): 453-458.

- Verma, S., Bairwa, R.K., Rana, D.K., Dimri, T. and Dotaniya, C.K. (2018). Influence of different concentrations of zinc, boron and iron on yield characters of strawberry (*Fragaria* × *ananassa* Duch.) cv. chandler under valley condition of Garhwal Himalaya. Journal of Pharmacognosy and Phytochemistry. 7(2): 3881-3884.
- Vishal, V.C., Thippesha, D., Chethana, K., Maheshgowda, B.M., Veeresha, B.G. and Basavraj, A.K. (2016). Effect of various growth regulators on vegetative parameters of strawberry (*Fragaria* × *ananassa* Duch.) cv. Sujatha. Research Journal Chemical and Environmental Sciences. 4(4): 68-71.
- Xie, Y.G., Ma, Y.Y., Bi, P.P., Wei, W., Liu, J., Hu, Y. and Feng, J.Y. (2020). Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiology and Biochemistry. 146: 374-383.
- Xu, Y., Charles, M.T., Luo, Z., Mimee, B., Veronneau, P.Y., Rolland, D. and Roussel, D. (2017). Preharvest ultraviolet C irradiation increased the level of polyphenol accumulation and flavonoid pathway gene expression in strawberry fruit. Journal of agricultural and food chemistry. 65(46): 9970-9979.
- Yadav, I., Singh, J., Meena, B., Singh, P., Meena, S., Neware, S. and Patidar, D.K. (2017). Strawberry yield and yield attributes after application of plant growth regulators and micronutrients on cv. winter dawn. Chemical Science Review and Letters. 6(21): 589-594.
- Yoshida, Y. and Nishimoto, T. (2020). Propagation and floral induction of transplant for forcing long-term production of seasonal flowering strawberries in Japan. The Horticulture Journal. 89(2): 87-95.
- Zewail, R. M.Y., El-Gmal, I.S., Khaitov, B. and El-Desouky, H.S. (2020). Micronutrients through foliar application enhance growth, yield and quality of sugar beet (*Beta vulgaris* L.). Journal of Plant Nutrition. 43(15): 2275-2285.
- Zhao, C., Hua, L.N., Liu, X.F., Li, Y.Z., Shen, Y.Y. and Guo, J.X. (2017). Sucrose synthase FaSS1 plays an important role in the regulation of strawberry fruit ripening. Plant Growth Regulation. 81(1): 175-181.
- Zhao, Z., Wu, X., Chen, H., Liu, Y., Xiao, Y., Chen, H. and Yao, H. (2021). Evaluation of a strawberry fermented beverage with potential health benefits. Peer Journal. 9: e11974.