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ABSTRACT
Legumes are an important source of protein and provide a health-rich diet for human beings. It contains essential amino acids. It
mainly plays a significant role in soil enrichment. Due to their role in agriculture and human nutrition, scientists have made efforts to
develop new traits. The genetic enhancement of legumes was achieved using traditional breeding over the years however, the
progress is very slow. Recent developments in genome editing technologies, specifically CRISPR-Cas technology, have improved
key agricultural traits in legumes and offer a wealth of opportunities for studying traits like improved seed nutrient content, enhancing
productivity and resilience to biotic and abiotic stresses recently introduced in legumes. So far, the genome editing technology has
been effectively used in various legume crops, mainly soybean, peanut, cowpea and chickpea. Still, the transformation and regeneration
of other legumes have remained a significant hurdle to the implementation of gene editing. This review mainly highlights the use of
different gene editing technologies in legumes, progress and updates of CRISPR/Cas9 tools in legumes and challenges of legume
crops face during production.
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By 2050, the global populace is projected to surpass 9.5
billion, so to ensure food security, the agricultural output
must be boosted by 60-100%. Cereals and legumes are
the two main crops cultivated worldwide to feed billions of
people. Legumes belong to the Fabaceae family of
angiosperms and comprise about 19,500 species in 751
genera. It consists of small herbs and large trees. Legumes
are essential for sustainable agriculture as they perform an
integral function in the natural ecosystem. Legumes supports
with high-quality organic matter into the soil due to their
symbiotic nitrogen-fixing ability and increase soil fertility
(Baloglu et al., 2022). Leguminous crops are considered as
the most significant due to their various uses, including
animal pasture, aquaculture feed and human food. Legumes
are popular for their protein content and contain health-
promoting chemicals, including lignans, folate, saponins and
antioxidants (Mousavi Derazmahalleh et al., 2019). Legumes
can effectively solve the issues related to nutrient deficiency.
Nevertheless, global legume production is not up to the mark
and various biotic and abiotic stresses heavily influence the
yields (Choudhury and Rajam, 2021).

Advanced molecular techniques have supplanted
conventional plant breeding methods, which are time-
consuming and expensive, to tackle the global food
shortage. It takes years to establish specific crop traits, while
genetic engineering, which involves introducing foreign
genetic material, creates social biosafety issues. Hence, due
to the rise of advanced molecular techniques such as
genome editing, the focus of targeted crop improvement
has shifted towards a new path (Rasheed et al., 2022). The
availability of complete genome sequence of organisms
substantially contributes to the advancement of next-

generation genome editing research. New-generation
genome-editing experiments are more common in legumes,
namely Lotus japonicus, Glycine max and Medicago
truncatula, than in other family members (Baloglu et al.,
2022).

Gene editing is an emerging process to generate
precise DNA modifications at specific genomic locations.
The precise gene edits can be achieved via gene editing
technologies such as Transcription activator like effector
nucleases (TALENs), Zinc finger nucleases (ZFNs) and
CRISPR/Cas systems. W hile other gene editing
technologies still have their role, the emergence of CRISPR/
Cas systems has significantly improved the accuracy and
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effectiveness of editing (Karavolias et al., 2021). In legumes,
the CRISPR/Cas9 technology was first demonstrated in
Soybean (Glycine max) (Wang et al., 2017). This review,
primarily focus on the application of gene editing technology
in legumes and the challenges of legume production.

Modifying the genome of legumes using genome
editing technologies
In recent years, genome editing technologies have reformed
nearly every domain of biological research fields, expanding
the scope of agricultural studies. These technologies enable
the creation of novel plant varieties by introducing precise
mutations that modify or deactivate target gene functions.
With the progression of these technologies, there has been
a rise in the amount of legume genomes that have been
sequenced. Zinc finger nucleases (ZFNs), Transcription
activator-like effector nucleases (TALENs) and CRISPR stand
out as highly advanced tools for precise genome editing
(Wang et al., 2017). At present, CRISPR genome-editing
technique is being employed to address challenges in
agriculture, aiming to meet the growing demand for food in
the future.

Zinc finger nucleases (ZFNs) is an initially established
genome editing tool that revolutionizes genome
manipulation research. Its functionality is quite similar to
TALEN. ZFN has two components: the DNA binding domain
(housing custom-engineered Cys2-His2 (C2H2) zinc finger
protein) to spot specific DNA sequences and the DNA
cleavage domain (containing the Fok1 restriction enzyme)
to cut the target DNA site (Urnov et al., 2005). These two
domains are linked to make the ZFN functional. This DNA
binding domain consists of 2 to 3 zinc finger domains, each
recognising one amino acid, i.e., 3 DNA bases. ZFN is used
to either knockin or knockout the gene of interest (Daniel et al.,
2023). Two FokI endonuclease domains must dimerize to
become active; dimerization of FokI nuclease generates a

functional nuclease complex that results in double-strand
breaks (DSBs). The resulting double-stranded breaks can
be repaired either by homologous recombination (HR) or
nonhomologous end joining (NHEJ). ZFN is a complex
process that might lead to off-target effects and unexpected
mutations. Despite the availability of kits, producing ZFNs
is still more time-consuming and less adaptable than
TALENs or the CRISPR/Cas system due to target sequence
suitability constraints (Puchta and Fauser, 2014). In legume
plants, targeted mutagenesis was performed targeting the
soybean genes DICER-LIKE (DCL) genes - DCL4a and
DCL4b which underwent successful knockout by utilising
both hairy root and stable Agrobacterium-mediated
transformation methods to deliver ZFNs (Curtin et al.,
2011).

Transcription activator-like effector nucleases (TALENs)
is also a genome editing tool similar to ZFNs. Like ZFNs,
TALEN is also formed by combining the DNA binding domain
of TALE protein repeats with the cleavage domain of FokI
nuclease. The DNA binding domain comprises multiple
repeats; however, unlike ZFNs, each DNA binding domain
recognizes just one nucleotide (Christian et al., 2010). Their
adherence to the target sites triggers the dimerization of
the FokI nuclease domains, forming a functional complex
that induces double-strand breaks (DSBs) at the designated
site (Cermak et al., 2011). Currently, there are limited studies
on the use of TALENs in soybeans and no advancements
have been documented with other legumes. In Soybean,
TALENs were employed to knock out two genes, FAD2-1A
and FAD2-1B, influencing soybean oil quality. Challenges
such as the complexity of creating DNA-binding modules,
ineffective genome targeting and frequent off-target
consequences have considerably limited the application of
TALENs in legume research (Haun et al., 2014).

“Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)” is an advanced genome editing method

Fig 1: Genome editing for enhancement of yield and its attributing traits.
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to alter the crop genome to improve its traits suitable for
changing environmental conditions (Fig 1). It is an adaptive
immune system of prokaryotes that helps to recognize and
destroy the invading phages and pathogens (Bao et al., 2020).
It has been grouped into two classes depending on the
organization of Cas effector module - Class I and Class II.
Class I consists of type I, type III and type IV subunits, whereas
Class II comprises type II, type V and type VI subunits. Among
these various types, the CRISPR-Cas9 belonging to type II
is an extensively used genome editing tool owing to its
simplicity. CRISPR-Cas process mainly uses 2 key molecules,
a Cas9 an endonuclease and a guide RNA (gRNA) to guide
the Cas9 enzyme to cleave the target DNA for precise editing.
Cas9 includes 2 nuclease domains, HNH and RuvC, to cleave
the complementary and non-complementary target DNA
strands. The Cas9 requires the presence of a protospacer-
adjacent motif (PAM) sequence that helps the Cas9 recognize
the target site. PAM sequence varies according to the Cas
protein; in case of Cas 9 it is 5-NGG-3. The Cas9 protein is
obtained from Streptocococcus pyogenes. The guide RNA
is made up of a crRNA (CRISPR RNA) that attaches to the
target sequences and tracrRNA (transactivating RNA) that
promotes target detection and cleavage (Deltcheva et al.,
2011). The Cas9 makes a double-stranded break (DSB)
at that specific location which can be mended by the non-
homologous end joining (NHEJ) pathway or homology-
directed repair (HDR). Plants mostly repair double-strand
breaks (DSBs) using the non-homologous end joining
(NHEJ) mechanism (Jinek et al., 2012). This route is error-
prone, which typically result in base insertion or deletion.
As a result, genomic changes happen at the repair site
(Ahmar et al., 2020).

CRISPR-mediated gene editing has successfully
modified a variety of legumes (Table 1). It has increased
crop output and resilience to both biotic and abiotic
challenges. Extensive research has been undertaken on the
domestication of legume species and the CRISPR/Cas9
mechanism is currently being used to improve different
features. Recent breakthroughs demonstrate great success
in enhancing the nutritional value of legumes using CRISPR/
Cas9 technology (Das and Acharjee, 2023).

Challenges in major legumes and minor legumes
Generally, legumes face numerous challenges during
cultivation and production, including socio-economic,
genetic, biotic and abiotic factors. These constraints reduce
yield, ultimately limiting farmers from cultivating it in more
areas (Govindaraj et al., 2015). Legumes are classified into
2 types: major and minor, depending on their value and low-
cost. Major legumes are commonly used and widely
recognized. These legumes possess established
domestication, cultivation and agronomic practices. The
major legumes include Glycine max L., Vigna unguiculata L.,
Arachis hypogaea  L., Phaseolus vulgaris  L.,  Pisum
sativum L. and Cicer arietinum L. However, minor legumes
are not popular as they are less well-known and are regarded

as underutilized. The minor legumes include Psophocarpus
tetragonolobus L., Cajanus cajan L., Lablab purpureus L.,
Phaseolus lunatus L., Canavalia sp., Vigna mungo L., Vigna
subterranea L.,  Tylosema esculentum L., Kerstingiella
geocarpa, African yam bean, Sphenostylis stenocarpa
Harms and Vigna angularies L. (Popoola et al., 2019).

Arachis hypogaea (Peanut), an allotetraploid is one
of the important promising legume crops. Originating in
South America, it is now cultivated throughout the
temperate and tropical regions of the world. It is rich in
high oleic acid content and is globally recognized as an
important oilseed crop because of its oil content, nutritional
value and other industrial uses. It covers a vast expanse
of 32.72 million hectares (M ha) with a 1648 kg/hectare
productivity rate. The world’s major peanut producers are
China, India and Nigeria. China, producing 18.36 million
tons (MT), is the world’s leading peanut producer. Despite
all, the peanut faces numerous challenges in yield and
quality because of various biotic and abiotic stresses (You
et al., 2024). Common fungal pathogens include Botrytis
cinerea, Macrophomina phaseolina, Cylindrocladium
crotalariae , Cetcospora arachidicola  and Puccin ia
arachidis, which causes rot, spot and rust diseases in
peanut crops. Viral diseases that affect peanut production
include Peanut Bud Necrosis Virus (PBNV), Tomato
Spotted Wilt Virus (TSWV) and Peanut Stunt Virus (PSV)
(Palekar et al., 2023). A significant global challenge in
peanut cultivation is aflatoxin (AFs) contamination, posing
considerable concern due to the toxicological effects of
these toxins. High doses of aflatoxin consumption may lead
to mortality (Torres et al., 2014). Hence CRISPR/Cas9
genome-editing tool can be used to develop varieties
resistant to these diseases which will have an impact on
the global peanut industry. Apart from this, climate change
is also a main challenge that causes severe effects in
groundnut yield. Increased CO2 level, unreliable rainfall and
temperature fluctuations inhibit the physiology, disease
tolerance, yield and fertility. To overcome these threats, it
is essential to develop climate-resistant varieties with stable
genetic enhancements (Gangurde et al., 2019; Ghosh et al.,
2022; Puppala et a l., 2023). Peanut breed ing was
challenging in ancient times due to its polyploid genome.
However, recent advances in molecular techniques,
leveraging the peanut genome, have illuminated successful
strategies for its genetic improvement (Sharma et al., 2023;
Sun et al., 2013).

Glycine max (Soybean) holds significant economic
value as it contains abundant protein and oil sources for
both animal and human feed (Li et al., 2019). The challenges
like ineffic ient farming systems, pests, diseases,
environmental stresses like drought and lack of disease-
resistant cultivars hinder soybean production. Diseases like
bacterial leaf blight, downy mildew, stem and root blight,
purple seed stain, brown spot, charcoal rot and soybean
mosaic virus are the common familiar diseases that affect
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Table 1: Traits targeted using gene-editing techniques in various legume crops.

Crops Modified genes Techniques References

Arachis hypogaea L. AhMULE9A CRISPR/Cas9 (Li et al., 2023)
FAD2 CRISPR/Cas9 (Neelakandan et al., 2022)
AhNFR1 and AhNFR5 CRISPR/Cas9 (Shu et al., 2020)
Ara h1, Ara h2 and Ara h3 CRISPR/Cas9 (Kim and Jun, 2022)
Ara h2 CRISPR/Cas9 (Biswas et al., 2022)

Brassica napus FAD2 CRISPR/Cas9 (Okuzaki et al., 2018)
BnWRKY11 and BnWRKY70 CRISPR/Cas9 (Sun et al., 2018)
BnaMAX1 CRISPR/Cas9 (Zheng et al., 2020a)
BnALC CRISPR/Cas9 (Braatz et al., 2017)
JAG CRISPR/Cas9 (Zaman et al., 2019)
BnaFAE1 CRISPR/Cas9 (Liu et al., 2022)

Cicer arietinum 4CL and RVE7 CRISPR/Cas9 (Badhan et al., 2021)
Glycine max GmPRR3b CRISPR/Cas9 (Li et al., 2020)

LNK2 CRISPR/Cas9 (Li et al., 2021)
GmLox1, GmLox2 and GmLox3 CRISPR/Cas9 (Wang et al., 2020)
AGO7 CRISPR/Cas9 (Zheng et al., 2020b)
GmFT2a CRISPR/Cas9 (Cai et al., 2018b)
qFT13-3 CRISPR/Cas9 (Li et al., 2023)
DCL4a and DCL4b ZFNs (Curtin et al., 2011)
FAD 2 TALENs (Haun et al., 2014)
GmFEI2 and GmSHR CRISPR/Cas9 (Cai et al., 2015)
SPL CRISPR/Cas9 (Bao et al., 2019)
GmExpA and GmExpLB CRISPR/dCas9 (Freitas Alves et al., 2024)
FAD2–2 CRISPR-Cas9 (Al Amin et al., 2019)
DD20 and DD43 CRISPR-Cas9 (Cai et al., 2015)
GFP CRISPR-Cas9 (Jacobs et al., 2015)
GmPDS11 and GmPDS18 TALENs and CRISPR/Cas9 (Du et al., 2016)
GS1 CRISPR/Cas9 (Michno et al., 2015)
CHI20 CRISPR/Cas9 (Michno et al., 2015)
Conglycinins (7S) and glycinins (11S) CRISPR/Cas9 (Li et al., 2019)
GmPHYA or GmPHYB CRISPR/Cas9 (Zhao et al., 2022)
CENH3 CRISPR/Cas9 (Wang et al., 2023)
GmFEI2 and GmSHR CRISPR/Cas9 (Cai et al., 2015)
GmFT2a and GmFT5a CRISPR/Cas9 (Cai et al., 2018b)

Lotus japonicus CYP716A51 and LjCYP93E1 CRISPR/Cas9 (Suzuki et al., 2019)
LjαCA2, LjαCA6 and LjβCA1 CRISPR/Cas9 (Wang et al., 2021)
LHK1 CRISPR/Cas9 (Cai et al., 2018a)
LjBAK1 CRISPR/Cas9 (Feng et al., 2021)
HAR1 CRISPR/Cas9 (Okuma et al., 2020)
NIN CRISPR/Cas9 (Akamatsu et al., 2021)
SNF CRISPR/Cas9 (Wang et al., 2019)
Lbs CRISPR/Cas9 (Wang et al., 2019)

Medicago truncatula FMO1-LIKE, RFP1-like, ERDJ2, CRISPR/Cas9 (Curtin et al., 2017)
MEL1, PEN3-like, ACRE1,
HLZ1-like, HLZ1-like, PHO2-like,
PNO1-like and FBL1-like
MtHen1 CRISPR/Cas9 (Curtin et al., 2011)
MtPDS CRISPR/Cas9 (Meng et al., 2017)
GUS CRISPR/Cas9 (Michno et al., 2015)
NPD CRISPR/Cas9 (Trujillo et al., 2019)

Table 1: Continue...
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the soybean (Ayilara et al., 2023). Soybean rust, caused
by Phakopsora pachyrhizi, is a most significant foliar disease
worldwide. So proper control measures can make the plant
survive under these adverse conditions (Nair et al., 2023).
Implementing modern breeding technologies that are quick,
accurate and effective is vital for obtaining varieties with good
yields, quality and stress tolerance, thereby addressing
agricultural challenges. Genome editing technology is a
suitable and relevant method for specifically improving
cultivating crops with these desirable features, making it an
ideal tool for genetic improvement in soybeans. The precise
modifications enabled by genome editing enhance soybean
traits, ensuring better agricultural outcomes (Bao et al., 2020).

Vigna unguiculata (Cowpea) is a widely cultivated
legume crop possesses rich nutritional benefits and is also
recognised as a black-eyed pea. It was first domesticated
in Africa and about 200 million people consume it in Africa.
It is consumed by many people in Africa, Asia and America
as a daily diet. Due to its ability for symbiotic nitrogen fixation
and valuable agronomic characteristics, including resilience
to limited rainfall and minimal fertilizer needs, it is regarded
as the most valuable legume crop in the world. These factors
have led to the attention of cowpea gene-editing techniques
(Ji et al., 2019; Rasheed et al., 2022). Until 1967, the United
States was one of the world’s top 10 producers of cowpea.
With the expected growth in the minority population of the
United States of about 47% in 2050, the consumption of
cowpea is projected to increase substantially. Like other
crops, cowpea productivity faces significant challenges from
pests and diseases. Root-knot nematode (RKN) poses a
significant threat to cowpea production in the U.S. by causing
substantial damage to its root system and resulting in yield
loss. Various commercial cowpea cultivars resistant to these
specific RKN species have been created. Nonetheless,
certain nematode populations are RK-virulent, rendering the
narrow genetic resistance the RK genes provide ineffective
against them (Osipitan et al., 2021). Weeds are considered
one of the most serious threats to cowpea cultivation, which
causes up to 76% yield loss. Leveraging advanced
technologies such as CRISPR/Cas9, endeavours have been
undertaken to create varieties exhibiting resistance to
herbicide, insects and diseases, significant impediments to
cowpea production (Osipitan, 2017).

Cicer arietinum (Chickpea) is an essential legume crop
cultivated worldwide. Its genome sequence has been
published in 2013 (Badhan et al., 2021). It is very sensitive

to saline conditions to just 25 mM NaCl in hydroponics,
resulting in yield loss of about 8 to 10%. However, it
remains unclear why chickpeas are particularly prone to salt
sensitivity. During seed germination, some chickpeas are
more resistant to 320 mM NaCl. The reason for this
dissimilarity also remains unclear. So, genome editing
techniques can be used to generate plants that are tolerant
to saline conditions (Sobh et al., 2023). The CRISPR-Cas9
system has the capacity to enhance yield potential even
when plants are under biotic and abiotic stress, leading to
the development of plants with the necessary traits.

Challenges and opportunities in legume for genetic
improvement
Legumes pose challenges for genetic transformation due
to tissue-specific transformability and regeneration issues.
Challenges in confident detection include diverse mutations
induced by gene-editing proteins and target organism
complexit ies like homolog multiplic ity. Legume
regeneration limitations may require screening numerous
lines or tissues, demanding cost-effective and sensitive
methods. While economically important legume genomes
are typically not recent polyploids, gene duplications are
common in this clade. Reliable interpretation of detection
experiments benefits from high-quality genome
assemblies, especially for assessing off-target effects
(Bhowmik et al., 2021).

CRISPR/Cas9 technology presents a promising avenue
for revolutionizing plant breeding by streamlining processes
and reducing labour-intensive tasks compared to traditional
methods. However, despite its potential, several challenges
hinder its widespread application in plant genome editing.
Major challenges in improvement of some of the legumes
are given in Table 2. One such challenge involves the editing
of plant organelle genomes, where precise modifications are
often complex due to their unique genetic features.
Additionally, ensuring transgene-free editing remains a priority
for regulatory and consumer acceptance, posing technical
hurdles in achieving heritable genome modifications without
foreign DNA integration. Another frontier is virus-induced
genome editing, where leveraging viral vectors for delivery
holds promise but requires meticulous control to avoid
unintended consequences. Furthermore, editing recalcitrant
elite crop inbred lines, which are crucial for agricultural
productivity, presents significant obstacles due to their genetic
complexity and limited regeneration capacity. Addressing

CYP93E2 and CYP72A61 CRISPR/Cas9 (Confalonieri et al., 2021)
MtSUP CRISPR/Cas9 (Rodas et al., 2021)

Medicago sativa L. NOD26 CRISPR/Cas9 (Bottero et al., 2021)
Pisum sativum PsLOX2 CRISPR/Cas9 (Bhowmik et al., 2023)
Vigna unguiculata SNF CRISPR/Cas9 (Ji et al., 2019)

VuSPO11-1 CRISPR/Cas9 (Juranic et al., 2020)
PDS CRISPR/Cas9 (Bridgeland et al., 2023)

Table 1: Continue...



     Legume Research- An International Journal880

these challenges demands continued innovation in CRISPR/
Cas9 technology and strategic collaborations across
disciplines to unlock its full potential in shaping the future of
plant genetic improvement (Son and Park, 2022).

Agrobacterium-mediated transformation is predominantly
used, with biolistic methods employed in plant regeneration
(Yadav et al., 2017). CRISPR/Cas9 offers promise in
overcoming transformation hurdles. Soybean stands out with
successful CRISPR/Cas9 applications, yielding 41 cultivars
(Bhowmik et al., 2021). Large-seeded legumes face rooting
challenges in vitro. Stable regeneration protocols are crucial
for commercial production, yet many legumes lack successful
protocols due to poor rooting (Deng et al., 2022). Genetically
modified organisms resistance hinders transformation
acceptance, especially in smaller markets (Negi et al., 2021).
Techniques like sonication-assisted Agrobacterium
transformation enhance transformation efficiency. Optimizing
explants, host-plant affinity and culture media additives can
improve transformation rates. Molecular science advancements
will uncover solutions for legume transformation challenges
(Rasheed et al., 2022).

Legume research benefits from a wealth of genetic
resources but grapples with the challenges of managing their
diversity and complexity. A workshop identified key needs:
developing strategies for storing and integrating genetic
resources, standardizing data formats and metadata,
recognizing the critical role of curators, implementing
standardized software practices, creating tools for global
plant genetic information management and centralizing
database information while supporting training and outreach
efforts (Bauchet et al., 2019).

CONCLUSION
Legumes are significant in the human diet as they contain
several nutritional values. Legume production is affected
by numerous factors, namely biotic and abiotic stresses like
drought, salinity, temperature and heavy metals stress.
However, the need for agricultural improvement, driven by
rapid climate change and population increase, highlights
the importance of thinking beyond the box. Though
transgenic technology is used to create plants that are
tolerant to several stresses, due to numerous regulatory

concerns, commercial success is very low across the world.
The emergence of genome editing tools such as ZFNs,
TALENS and CRISPR/Cas allows for the rapid production
of site-specific alterations in the genetic makeup of plants.
For efficient genome editing, thorough knowledge of
legumes genomic sequences is essential. The discovery of
genes that regulate various traits in legumes, such as seed
size, quality, disease resistance and ability to withstand
abiotic stresses, enables the development of new and unique
varieties in the future. We conclude that further research is
needed on the application of CRISPR/Cas9 in legume crops
to unravel successful genetic transformation. Numerous
legume crops remain unexplored for effective gene editing
and studies should address the challenges and difficulties
associated with legume transformation. The future is likely
to witness an increased use of CRISPR/Cas9, providing
additional insights into the genetic enhancement of legume
crops to ensure global food security.
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