Shrimp shells, Chitin and chitosan powders effect on growth of *Lycopersicon* esculentum and their ability to induce resistance against Fusarium oxysporum f.sp. radicis-lycopersici attack

Rkhaila Amine* and Ounine Khadija

Ibn Tofail University,

Campus University, BP 133 Kenitra, Morroco.

Received: 09-11-2017 Accepted: 06-09-2018 DOI: 10.18805/IJARe.A-305

ABSTRACT

The potential of co-products of shrimp shells on the germination parameters, growth, and for inducing defense reactions in tomato (*Lycopersicon esculentum*) plants inoculated with Fusarium oxysporum f.sp. radicis-lycopersici (FORL) was investigated *in vitro* and *in vivo*. It was found that chitosan at 50mg/l increased the germination percentage by 2.66%; the shrimp shells powder at 50mg/l was best in increasing the length of radical and length and weight of hypocotyl *in vitro*. *In Vivo*, chitosan at 50mg/l increased length, fresh/dry weight of aerial and radicle parts compared to control. An inhibition of FORL growth *in vitro* was obtained by addition of chitosan at 100mg/l. In addition, chitin at 25 mg/l decreased the foliar alteration index by 73.34% compared to control.

Key words: Chitin, Chitosan, Fusarium oxysporum f.sp, *Lycopersicon esculentum*, Parapenaeus longirostris, Radicis-lycopersici, Shrimp shells.

INTRODUCTION

Destined in its entity for human consumption, shrimp generates co-products (heads, shells and tails) as wastes. These wastes contain several substances, which are worth of recovery (lipids, chitin, carotenoid astaxanthin, mineral elements ...) (Heu *et al.*, 2003) and other bioactive compounds (Kim *et al.*, 2008) that are beneficial for both human and animal health.

The chitin is obtained by different methods including the chemical ones (Varun *et al.*, 2017). Shrimp co-products can play an important role in elicitation of plants, inducing a non-host resistance, and prime the plants for systemic acquired resistance (Singh *et al.*, 2018).

In the present study, red shrimp shells (Parapenaeus longirostris) were used to extract chitin and chitosan. The objectives of the experiments are to determine the effects of three treatments (shrimp shells, chitin and chitosan powders') on the germination of tomato seeds *in vitro*; and on plant growth parameters of Lycopersicon esculentum *in vivo* and, also, on the inhibition of FORL which causes very large yield reductions in tomato.

MATERIALS AND METHODS

Preparation of the raw material: Shrimp shells of Parapenaeus longirostris species are collected at the central market of Mehdia town of Kenitra, and transported to the laboratory in a cooler (4°C). They are washed thoroughly to remove all impurities. The obtained shells were dried at 70°C for 12h, then ground and sieved at -20°C.

Preparation of chitin and chitosan eparation of chitin

A. Acid demineralization: In this step, shrimp shells powders' is suspended in a solution of HCl (2N) with a ratio 1 g: 20ml, and then left to react for 30min with constant stirring at room temperature (Benhabiles *et al.*, 2012). The decalcified product is rinsed until neutrality and then dried for 12h.

B. Basic deproteinization: The retentate is introduced into a pyrex flask, in which is added a NaOH (2N) solution with a ratio of 1: 20 (g: ml). The deproteinization takes 2 hours under constant stirring in a water bath at 45°C. (Benhabiles *et al.*, 2012). The residues are then rinsed, filtered and dried for 12 hours.

C. Discoloration: A solution of acetone at a ratio of 1g: 10ml is mixed with the powder for 10min. After filtration, it is dried for 2 hours at room temperature. Bleaching is carried out with 0.315% NaOCl at a ratio of 1g: 10ml for 5 min (No *et al.*, 1995). The discolored chitin is washed and filtered.

Preparation of chitosan

A. Deacetylation: This step is carried out using the protocol suggested by Putra and Husni (2013) with some modification. A solution of 50% NaOH at a ratio of 1g: 20ml was mixed with chitin under constant stirring for 8 hours in water bath at 100°C, with a renewal of the NaOH solution every hour.

Physico-chemical analysis of shells

Moisture content: The shrimp shells were dried at 70°C for 12 hours and the moisture content was determined using the following formula:

Moisture content % =
$$\frac{\text{Initial weight (g) -Dry weight}}{\text{Dry weight}} \times 100$$

Measurement of ash content: A sample of 2g of the shrimp shells powder was incinerated at 600°C for 6 hours (Kim, 2004), and the ash content was determined by the following formula:

Ash content % =
$$\frac{\text{weight of ash}}{\text{Original sample weight}} \times 100$$

Determination of the degree of deacetylation by potentiometric titration: According to the protocol of Rutherford and Austin (1978), a sample of 0.1g of chitosan and 40ml of NaOH (50%) were stirred for 1hour and 30 min in water bath at 100°C, after that 25ml of concentrated phosphoric acid was carefully added. The resulting solution is distilled on vigreux colonne. When the distillation flask began to dry, 15ml of hot distilled water was added to the flask. This step was repeated until 250ml of distillate is recovered. A sample of 25ml of distillate was titrated with 0.1N NaOH using phenolphthalein as an indicator. The percentage of acetyl was determined by the following formula:

Acetyl
$$\% = V \times 0.04305/W$$

V: NaOH volume W: weight of sample

Germination and growth of Lycopersicon esculentum In vitro assay

A. Disinfection of Lycopersicon esculentum seeds: Seeds of the tomato (Rio Grande variety) were disinfected by successive immersion in 1% aqueous NaOCl for 10 minutes (Rao *et al.*, 2006) and then 3 times in sterile distilled water.

B. Filter paper medium: Concentrations of 25, 50, and 100mg/l of shrimp shells, chitin and chitosan powders' were macerated in distilled water for 24 hours at room temperature to extract the soluble principles. The solutions' pH was adjusted to 6.0 with 1% NaOH solution.

Seeds (25) placed on the Petri dishes (90mm) containing three discs of filter paper moistened with 4 ml of macerate (Ramanaand et~al., 2002). For the control, the sterile distilled water was used. The incubation was carried out at $26\pm1\,^{\circ}\text{C}$, and a photoperiod of 16h of illumination. After 10 days, the germination parameters was determined.

In vivo assay: Seedlings at the three-leaf stage (Benhamo and Thériault, 1992) were cultivated on pots containing sterilized Maamora soil and then transported in a greenhouse.

The effect of each treatment was determined by a weekly soil amendment for 8 weeks with a volume of 100ml of each treatment (Lafontaine and Benhamou, 1996). For the control, only sterile distilled water was used. Five seedlings were used for each treatment, and the experiment was repeated twice (Benhamou and Thériault, 1992).

Stimulation of resistance of *Lycopersicon esculentum* seedlings

Action on Fusarium oxysporum f.sp. radicis-lycopersici *in vitro*: Discs of 5 mm diameter were cut from a pure culture of Fusarium oxysporum f.sp. radicis-lycopersici (isolated and identified in the Laboratory of Botany, Biotechnology and Plant Protection, Faculty of Science, Ibn Tofail University, Kenitra) cultured on PDA medium for 7 days. After that, 0.1ml of each treatment was spread on the surface of the PDA medium (Cheah *et al.*, 1997). Finally, discs (5 discs per treatment) were put face down on the surface of the PDA medium plus treatment (repeated five times per treatment) (Fig 1). The antifungal effect was determined by measuring the inhibition percentage of diametric growth using the following formula (Hajji *et al.*, 2016):

$$P.I.C.D = (Mt-Me / Mt) \times 100$$

P.I.C.D = percentage of inhibition of diametric growth. Mt=mean diameter of the control colony.

Me=mean diameter of colony exposed to shrimp shells, chitin or chitosan powders'.

In vivo assay: Five discs of 1cm³ of a 7-days-old pathogenic fungal colony were immersed in 750ml of Potato Dextrose Broth (PDB) for 5 days at 26°C; after that, the final density was adjusted to 3x10⁸ (CFU) ml⁻¹ (Lafontaine and Benhamou, 1996).

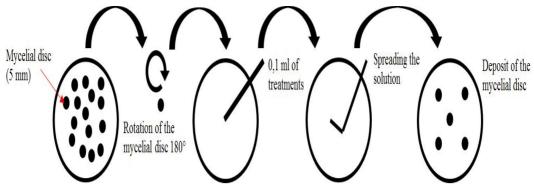


Fig 1: Schematic representation of the *in vitro* test on *FORL*.

Roots of seedlings at the three-leaf stage (Rio Grande variety) are thoroughly washed with sterile water and treated by soaking for 10min in different concentrations of the three powders' (25, 50 or 100 mg/l) with Tween 80 (0.01% v/v) (Benhamou and Thériault, 1992).

After that, each seedling was transplanted into a pot containing sterilized Maamora soil. Next day, the roots were inoculated by soaking for 30 seconds in the inoculum suspension. Five seedlings were used for each treatment, and the experiment was repeated twice (Benhamou and Thériault, 1992).

Re-isolation of FORL: The presence of FORL is searched in the roots of the tomato plants. The root system is disinfected by rapid soaking in 90° alcohol, rinsed several times with sterile distilled water, dried and cut into 5mm length fragments. The fragments are deposited in PDA medium. The incubation is carried out for 7 days at 26°C, in the dark.

Degree of infection

A. Alteration of leaves: The expression of foliar symptoms is estimated by a foliar index using the following rating scale (Douira *et al.*, 1994):

0=healthy appearance leafs.

1=cotyledonary leafs: wilting or yellowing;

2=Drop of the cotyledonary leaf;

3=Wilting or yellowing of the true leaf;

4=Necrosis of the true leaf;

5=Fall of the true leaf;

The sum of the notes relative to the number of leaves is the foliar alteration index. An average index is then calculated for each plant (Douira and Lahlou (1989)).

 $FAI = \frac{\left[\sum (i \times Xi)\right]}{6 \times NtF}$

Where:

FAI: Foliar alteration index;

i: Appearance notes for sheets 0 to 5; xi: Number of sheets with the note i;

NtF: Total number of sheets.

Table 1: Germination parameters means of tomato seeds.

Treatments (mg/l)		Germination (%)	Hypocotyl lengths(cm)	Radical lengths(cm)	Hypocotyl fresh weight (g)	Radical fresh weight (g)	Hypocotyl dry weight (g)	Radical dry weight (g)
Control	0	86.67 cde	5.03 abc	07.41 a	0.374 a	0.086 a	0.025 a	0.009 a
Shrimp	25	86.67 bcde	5.33 abc	09.46 bc	0.612 ef	0.249 b	0.030 cd	0.010 ef
shells powder 50		88.00 de	5.65 c	10.52 c	0.632 f	0.251 b	0.030 cd	0.012 g
	100	85.33 bcd	4.97 abc	08.57 ab	0.567 cd	0.234 b	0.029 bc	0.010 f
Chitin	25	82.67 abc	4.64 a	07.61 a	0.619 ef	0.262 c	0.039 e	0.010 cd
	50	80.00 a	5.29 abc	08.75 abc	0.506 b	0.244 b	0.026 ab	0.008 b
	100	84.00 abc	4.93 ab	08.22 ab	0.543 c	0.297 c	0.033 d	0.009 ac
Chitosan	25	88.00 de	5.21 abc	09.46 bc	0.590 de	0.267 c	0.039 e	0.010 de
	50	89.33 e	5.44 bc	09.06 abc	0.541 c	0.097 a	0.029 bcd	0.010 f
	100	88.00 de	5.44 bc	10.43 c	0.568 cd	0.358 d	0.040 e	0.012 g

Means in the same column with the same letter do not differ significantly from each other at $\alpha = 5\%$.

Statistical analysis: The difference between the means of each experiment is analyzed by the TUKEY test at ± 0.05 by a statistical software.

RESULTS AND DISCUSSION

Moisture and ash content: The obtained results from the measured parameters (moisture content "55.0764%" and ash content "51.2 %") for the shrimp shells explain the low productivity during the extraction of chitin and chitosan. The demineralization and the deproteinization of 100g of the shrimp shells powder gives 23.93% of chitin, which is comparable to those (24% of chitine) obtained by Benhabiles *et al.*, (2012).

Degree of deacetylation of chitosan: Using the formula of Rutherford and Austin (1978), we obtain 1.076% of acetyl; our results were considered high compared to those obtained by Putra and Husni (2013) (7.26% acetyl), even if we used a potentiometric titration, which could be the most reliable and robust of the non-NMR methods (Renata *et al.*, 2012).

Action of treatments on the germination and growth of Lycopersicon esculentum

Effect of treatments on the germination of *Lycopersicon esculentum*: The effect of the three treatments on germination parameters is set out in Table 1.

We found that the seed germination rate of the tomato was affected by the addition of chitosan at 50mg/l, which increased by 2.66% and 1.33% for the other chitosan concentrations (25mg/l and 100mg/l).

As for the hypocotyl and the radicle lengths, the seedlings from the medium containing the shrimp shells powder at 50 mg/l shows the highest values of these parameters. Similarly, the treatments had a favorable effect on the fresh weight of the two parts (hypocotyl and radicle).

Effect of treatments on the growth of Lycopersicon esculentum: The data for the weekly Maamora soil amendments are shown in Table 2.

Compared to control, a stimulation of length, fresh/dry aerial weight, and fresh/dry root weight are observed

5.770 c

Treatments Length of length of Fresh weight Fresh weight dry weight dry weight of root (mg/l)aerial part root part of aerial part of root part of aerial (cm) (cm) **(g)** (g) part(g) part(g) Control 1.082 a 0 16.3a 21.2 a 4.116 a 04.468 a 1.572 a Shrimp 25 2.006 ab 19.0 ab 21.8 a 4.170 a 06.730 ab 3.172 b shells **50** 29.0 abc 32.0 abc 6.154 ab 08.848 b 2.440 ab 4.946 bc 100 28.2 ab 1.826 ab 2.098 a powder 22.4 abc 5.334 ab 04.876 a Chitin 25 27.8 abc 38.0 abc 6.562 ab 03.146 a 2.182 ab 1.612 a 50 33.2 c 51.2 c 8.938 b 03.108 a 3.732 b 1.286 a 100 31.2 bc 33.2 abc 7.196 ab 03.656 a 2.454 ab 1.460 a Chitosan 25 36.8 abc 05.288 ab 3.234 b 27.2 abc 7.518 ab 2.728 a 50 35.4 c 42.2 bc 9.090 b 10.948 с 3.758 b 5.808 c

8.664 b

10.712 c

3.730 b

Table 2: Agronomic parameters of plants treated with shrimp shells, chitin and chitosan powders'.

36.0 abc Means in the same column with the same letter do not differ significantly from each other at $\alpha=5\%$.

among plants treated with chitosan at 50mg/l. Similarly, chitin at 50mg/l recorded the maximum value (51.2cm) over the length of the root compared to the control (21.2cm).

30.4 bc

It could be deduced that, the improvement of the root system's growth allowed a greater exploration of the soil and, consequently, an improved nutrition, which also results in a better development of the aerial part (size and biomass) (Fig 2).

Our results demonstrate the beneficial effect of the weekly soil amendment by chitosan 50mg/l, 100mg/l and chitin 50mg/l on tomato growth compared to the study of Lafontaine and Benhamou (1996) which demonstrates only the protective effect of chitosan at 37mg/l.

Stimulation of resistance

100

In vivo inoculation of tomato seedlings with Fusarium oxysporum f.sp. radicis-lycopersici: After observation of the typical symptoms of Fusarium on the control plants (Fig 3), the experiment is stopped (8 weeks after inoculation). Table 3 reports the average sizes of epicotyl, hypocotyl and means of foliar alteration indices of tomato plants inoculated with FORL.

It was found that the treated plants with chitin (25, 50 and 100mg/l) and chitosan (50 and 100mg/l) give maximum and highly significant means compared to the control.

.Based on the foliar alteration index, it could be easily concluded that the addition of treatments to the soil induce a highly significant reduction compared to the control of the symptoms; and the lowest FAI was registered by chitin at 25mg/l (FAI=0,165), contrary to the control with the highest FAI (0.619).

The effect of chitosan on FORL could be explained by the penetration of chitosan into conidia of the pathogen and the ultrastructural changes that might result in disorganization of the cytoplasm and loss of intracellular content in spores than in the mycelium (Palma-Guerrero et al., 2008).

Fig 2: Comparison of control plants sizes of tomato and treated plants.

Fig 3: Tomato plant show the characteristic symptoms of *FORL* (A), no inoculated plant (B).

Fig 4: (A) symptoms of Fusarium wilt on the stem of control plants inoculated with *FORL* (B) appearance of pathogen colonies reisolated from the roots of symptomatic plants.

Lafontaine and Benhamou (1996) obtained a mortality reduction of more than 90% by soil amendments with chitosan at 37,5mg/l whereas; in our study, no mortality was observed in the treated plants as compared to 40% mortality in control.

In addition, chitin and its derivatives play an eliciting role on plants, since they stimulate the production of phenylalanine ammonia-lyase and tyrosine ammonia-lyase, which were involved in the synthesis of compounds of the pathogen resistance system (Khan *et al.*, 2003).

On the other hand, Marshall (1976) justified the effect of chitin and its derivatives on the reduction of symptoms caused by FORL in tomatoes by the fact that the addition of those substances increased the microflora capable to attack chitinous hyphae by lytic enzymes. This causes lysis of the mycelium.

In vitro **test on Fusarium oxysporum f.sp. radicislycopersici:** Data in Table 4 reports the results of the three

Table 3: Size of epicotyl, hypocotyl, and the mean of foliar alteration index.

Treatements (mg/l)		Colony diameter (mm)	Inhibition of diametral growth(%)
Control	0	25.96 a	
Shrimp	25	24.58 ab	05,32
shells	50	23.06 abd	11,17
powder	100	21.32 bd	17,87
Chitin	25	14.62 e	43,68
	50	23.08 abd	11,09
	100	11.28 e	56,55
Chitosan	25	20.24 d	22,03
	50	20.00 d	22,96
	100	07.00 f	73,04

Means in the same column with the same letter do not differ significantly from each other at α =5%.

Table 4: Diameter and percentage of inhibition of the growth of Fusariumoxysporumf.sp. radicis-lycopersici colonies.

Treatments (mg/l)		epicotyle size (cm)	hyocotyl size (cm)	FAI
Control	0	31.4 a	7.60 a	0.619 a
Shrimp	25	44.2 ab	28.2 b	0.208 b
shells	50	35.6 ab	28.8 b	0.202 b
powder	100	49.0 b	30.8 b	0.215 b
chitin	25	53.6 b	35.0 b	0.165 b
	50	54.6 b	38.4 b	0.184 b
	100	54.0 b	28.4 b	0.173 b
chitosan	25	46.4 ab	32.2 b	0.193 b
	50	52.6 b	32.2 b	0.188 b
	100	51.6 b	25.6 b	0.214 b

Means in the same column with the same letter do not differ significantly from each other at α =5%.

treatments on the growth of FORL cultivated on PDA medium.

At 25 and 100mg/l of chitin, the inhibition of pathogen colonies reach 43.68% and 56.55%, respectively. However, at the 100mg/l of chitosan, the inhibition of pathogen is maximal (73.04%).

Re-isolation of Fusarium oxysporum f.sp. radicislycopersici: After one week of incubation in the dark ate 26°C, the colonies of violet color characteristic of the pathogen appear around the root fragments deposited on the surface of the PDA medium (Fig 4).

CONCLUSION

This study implies that application of shrimp shells, chitin and chitosan powders' to seeds of *Lycopersicon esculentum in vitro* and soil application for once a week tend to stimulate germination parameters, growth and significantly increased resistance to fusarium attacks.

REFERENCES

- Benhabiles, M.S., Salah R., Lounici H., Drouiche N., Goosen M.F.A. and Mameri N., (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste, *Food Hydrocolloids*. **29:** 48-56.
- Benhamou N. and Thériault G., (1992). Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. *Physiological and Molecular Plant Pathology.* **41:** 33-52.
- Cheah L.H, Page B.B.C and Shepherd R., (1997). Chitosan coating for inhibition of Sclerotinia rot of carrots. *New Zealand Journal of Crop and Hoticultural Science*, **25**: 89-92.
- Douira A. and Lahlou H., (1989). Variabilité de la spécificité parasitaire chez Verticillium albo-atrum Reinke et Berthold, forme à microsclérotes. *Cryptogamie Mycol.* **10** (1): 19-32.
- Douira A., Lahlou H., Elhaloui N.E. and Bompeix G., (1994). Mise en évidence de la variabilité du pouvoir pathogène dans la descendance d'une souche de Verticillium albo-atrum, forme à microsclérotes, après son adaptation à une nouvelle plante hôte et retour sur la plante d'origine. *Rev. Fac. Sei. Marrakech.* 8: 107-118.
- Hajji H., Tallal I., Maafa I., Bentata F., El alaoui faris F.E., Abdennebi EL., and El aissamI A., (2016). Evaluation in vitro de l'activité antifongique de quatre plantes médicinales marocaines sur cinq champignons phytopathogènes Revue Marocaine de Protection des Plantes. 10: 57-65.
- Heu M. S., Kim J. S., et Shahidi F., (2003). Components and nutritional quality of shrimp processing by-products. *Food Chemistry*. **82:** 235-242.
- Khan W, Prithiviraj B, and Smith DL., (2003). Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. *Journal of Plant Physiology*. **160**(8): 859-863
- Kim Fernandez, S. O. (2004). Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols. Thesis, Faculty of the Louisiana State University and Agricultural and Mechanical College.
- Lafontaine P. J., and Benhamou N., (1996). Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. *Biocontrol Science and Technology*. **6**: 111-124.
- Marshall, K. C., (1976). Interfaces in Microbial Ecology. Cambridge, MA: Harvard University Press. 11: 410-517.
- No H.K., Meyers S.P., and Lee K. S., (1989). Isolation and characterization of chitin from crawfish shell waste. *Journal of Agricultural and Food Chemistry*. **37**(3): 575-579.
- Palma-Guerrero, Jansson J., H., Salinas, J. and Lopez-Llorca, J.V., (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. *Journal of Applied Microbiology*. **104**(2): 541-553.
- Putra, M. M. P., and Husni, A., (2013). Production of Chitosan from Giant Fresh Water Prawn Shell (Machrobachium rosenbergii) as Natural Bioresources Materials. Presented at International Seminar on Tropical Bio-resource for Sustainable Bio-industry, ITB Bandung.
- Ramana S, Biswas AK, Kundu S, Saha JK, and Yadava RBR., (2002). Effect of distillery effluent on seed germination in some vegetable crops. *Bioresource Technolog.* **82:** 273-275.
- Rao NK., Hanson J., Dulloo ME, Ghosh K., Nowell D., and Larinde M., (2006). Manuel de manipulation des semences dans les banques de gènes. Manuels pour les banques de gènes No. 8. Bioversity International, Rome, Italie.
- Renata Czechowska-Biskup, Diana Jarosiñska, Bo¿ena Rokita, Piotr Ulañski, Janusz M. Rosiak; (2012). Determination of degree of deacetylation of chitosan-comparision of methods. Prog. Chem. Appl. *Chitin Its Deriv*, **17:** 2-5.
- Rutherford F. A. and Austin P. R. (1978). Proc. Int. Conf. Chitin/Chitosan, 1st, p. 182. Cited by DONALD h. Davies and Ernest R. H. (1988). Determination of the Degree of Acetylation of Chitin and Chitosan. *Methods in Enzymology*. **161:** 442-446.
- Singh, A., Gairola, K., Upadhyay, V., and Kumar, J. (2018). Chitosan: An elicitor and antimicrobial Bio-resource in plant protection. *Agricultural Reviews*, **39(2)**:163-168.
- Varun, T. K., Senani, S., Kumar, N., Gautam, M., Gupta, R., & Gupta, M. (2017). Extraction and characterization of chitin, chitosan and chitooligosaccharides from crab shell waste. *Indian Journal of Animal Research*, **51**(6), 1066-1072.